文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于造影的机器学习评估心肌缺血:开发与回顾性验证。

Machine learning assessment of myocardial ischemia using angiography: Development and retrospective validation.

机构信息

Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.

Department of Cardiology, CHA Bundang Medical Center, CHA University, Seongnam, Korea.

出版信息

PLoS Med. 2018 Nov 13;15(11):e1002693. doi: 10.1371/journal.pmed.1002693. eCollection 2018 Nov.


DOI:10.1371/journal.pmed.1002693
PMID:30422987
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6233920/
Abstract

BACKGROUND: Invasive fractional flow reserve (FFR) is a standard tool for identifying ischemia-producing coronary stenosis. However, in clinical practice, over 70% of treatment decisions still rely on visual estimation of angiographic stenosis, which has limited accuracy (about 60%-65%) for the prediction of FFR < 0.80. One of the reasons for the visual-functional mismatch is that myocardial ischemia can be affected by the supplied myocardial size, which is not always evident by coronary angiography. The aims of this study were to develop an angiography-based machine learning (ML) algorithm for predicting the supplied myocardial volume for a stenosis, as measured using coronary computed tomography angiography (CCTA), and then to build an angiography-based classifier for the lesions with an FFR < 0.80 versus ≥ 0.80. METHODS AND FINDINGS: A retrospective study was conducted using data from 1,132 stable and unstable angina patients with 1,132 intermediate lesions who underwent invasive coronary angiography, FFR, and CCTA at the Asan Medical Center, Seoul, Korea, between 1 May 2012 and 30 November 2015. The mean age was 63 ± 10 years, 76% were men, and 72% of the patients presented with stable angina. Of these, 932 patients (assessed before 31 January 2015) constituted the training set for the algorithm, and 200 patients (assessed after 1 February 2015) served as a test cohort to validate its diagnostic performance. Additionally, external validation with 79 patients from two centers (CHA University, Seongnam, Korea, and Ajou University, Suwon, Korea) was conducted. After automatic contour calibration using the caliber of guiding catheter, quantitative coronary angiography was performed using the edge-detection algorithms (CAAS-5, Pie-Medical). Clinical information was provided by the Asan BiomedicaL Research Environment (ABLE) system. The CCTA-based myocardial segmentation (CAMS)-derived myocardial volume supplied by each vessel (right coronary artery [RCA], left anterior descending [LAD], left circumflex [LCX]) and the myocardial volume subtended to a stenotic segment (CAMS-%Vsub) were measured for labeling. The ML for (1) predicting vessel territories (CAMS-%LAD, CAMS-%LCX, and CAMS-%RCA) and CAMS-%Vsub and (2) identifying the lesions with an FFR < 0.80 was constructed. Angiography-based ML, employing a light gradient boosting machine (GBM), showed mean absolute errors (MAEs) of 5.42%, 8.57%, and 4.54% for predicting CAMS-%LAD, CAMS-%LCX, and CAMS-%RCA, respectively. The percent myocardial volumes predicted by ML were used to predict the CAMS-%Vsub. With 5-fold cross validation, the MAEs between ML-predicted percent myocardial volume subtended to a stenotic segment (ML-%Vsub) and CAMS-%Vsub were minimized by the elastic net (6.26% ± 0.55% for LAD, 5.79% ± 0.68% for LCX, and 2.95% ± 0.14% for RCA lesions). Using all attributes (age, sex, involved vessel segment, and angiographic features affecting the myocardial territory and stenosis degree), the ML classifiers (L2 penalized logistic regression, support vector machine, and random forest) predicted an FFR < 0.80 with an accuracy of approximately 80% (area under the curve [AUC] = 0.84-0.87, 95% confidence intervals 0.71-0.94) in the test set, which was greater than that of diameter stenosis (DS) > 53% (66%, AUC = 0.71, 95% confidence intervals 0.65-0.78). The external validation showed 84% accuracy (AUC = 0.89, 95% confidence intervals 0.83-0.95). The retrospective design, single ethnicity, and the lack of clinical outcomes may limit this prediction model's generalized application. CONCLUSION: We found that angiography-based ML is useful to predict subtended myocardial territories and ischemia-producing lesions by mitigating the visual-functional mismatch between angiographic and FFR. Assessment of clinical utility requires further validation in a large, prospective cohort study.

摘要

背景:有创的 Fractional Flow Reserve(FFR)是识别导致缺血的冠状动脉狭窄的标准工具。然而,在临床实践中,超过 70%的治疗决策仍然依赖于对血管造影狭窄的视觉估计,其对 FFR < 0.80 的预测准确性有限(约 60%-65%)。视觉-功能不匹配的原因之一是心肌缺血可能受到供应心肌大小的影响,而冠状动脉造影术并不总是能明显显示这一点。本研究的目的是开发一种基于血管造影的机器学习(ML)算法,用于预测狭窄处的供应心肌体积,该体积通过冠状动脉计算机断层血管造影(CCTA)测量,然后构建一个基于血管造影的分类器,用于区分 FFR < 0.80 与≥0.80 的病变。

方法和发现:这项回顾性研究使用了 2012 年 5 月 1 日至 2015 年 11 月 30 日期间在韩国首尔 Asan 医疗中心接受有创冠状动脉造影、FFR 和 CCTA 的 1,132 例稳定性和不稳定性心绞痛患者的数据。患者的平均年龄为 63 ± 10 岁,76%为男性,72%的患者为稳定性心绞痛。其中,932 例患者(评估于 2015 年 1 月 31 日前)被纳入算法的训练集,200 例患者(评估于 2015 年 2 月 1 日后)被纳入验证集以验证其诊断性能。此外,还在韩国成均馆大学(CHA University)和水原市 Ajou 大学进行了 79 例患者的外部验证。使用引导导管的口径进行自动轮廓校准后,使用边缘检测算法(CAAS-5,Pie-Medical)进行定量冠状动脉造影。临床信息由 Asan BiomedicaL Research Environment(ABLE)系统提供。基于 CCTA 的心肌分段(CAMS)法测量每个血管(右冠状动脉[RCA]、左前降支[LAD]、左回旋支[LCX])的供应心肌体积和狭窄段的心肌体积(CAMS-%Vsub)。建立了基于血管造影的 ML 模型,用于(1)预测血管区域(CAMS-%LAD、CAMS-%LCX 和 CAMS-%RCA)和 CAMS-%Vsub,以及(2)识别 FFR < 0.80 的病变。采用轻梯度提升机(GBM)的基于血管造影的 ML 显示,预测 CAMS-%LAD、CAMS-%LCX 和 CAMS-%RCA 的平均绝对误差(MAE)分别为 5.42%、8.57%和 4.54%。通过 ML 预测的心肌体积百分比用于预测 CAMS-%Vsub。通过 5 折交叉验证,弹性网络(ELASTIC NET)最小化了 ML 预测的狭窄段心肌体积百分比(ML-%Vsub)与 CAMS-%Vsub 之间的 MAE(LAD 为 6.26%±0.55%,LCX 为 5.79%±0.68%,RCA 病变为 2.95%±0.14%)。使用所有属性(年龄、性别、受累血管节段、影响心肌区域和狭窄程度的血管造影特征),ML 分类器(L2 惩罚逻辑回归、支持向量机和随机森林)在测试集中以约 80%的准确率(曲线下面积[AUC]为 0.84-0.87,95%置信区间为 0.71-0.94)预测 FFR < 0.80,优于直径狭窄度(DS)>53%(66%,AUC = 0.71,95%置信区间 0.65-0.78)。外部验证显示准确率为 84%(AUC = 0.89,95%置信区间 0.83-0.95)。回顾性设计、单一种族和缺乏临床结局可能限制了该预测模型的广泛应用。

结论:我们发现基于血管造影的 ML 可用于预测供应心肌区域和导致缺血的病变,减轻血管造影和 FFR 之间的视觉-功能不匹配。临床实用性的评估需要在一个大型前瞻性队列研究中进一步验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2016/6233920/d1003d5f6749/pmed.1002693.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2016/6233920/d1003d5f6749/pmed.1002693.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2016/6233920/d1003d5f6749/pmed.1002693.g001.jpg

相似文献

[1]
Machine learning assessment of myocardial ischemia using angiography: Development and retrospective validation.

PLoS Med. 2018-11-13

[2]
Diagnostic performance of machine-learning-based computed fractional flow reserve (FFR) derived from coronary computed tomography angiography for the assessment of myocardial ischemia verified by invasive FFR.

Int J Cardiovasc Imaging. 2018-12

[3]
Incremental Value of Subtended Myocardial Mass for Identifying FFR-Verified Ischemia Using Quantitative CT Angiography: Comparison With Quantitative Coronary Angiography and CT-FFR.

JACC Cardiovasc Imaging. 2018-1-17

[4]
Better Diagnosis of Functionally Significant Intermediate Sized Narrowings Using Intravascular Ultrasound-Minimal Lumen Area and Coronary Computed Tomographic Angiography-Based Myocardial Segmentation.

Am J Cardiol. 2016-4-15

[5]
Impact of Subtended Myocardial Mass Assessed by Coronary Computed Tomographic Angiography-Based Myocardial Segmentation.

Am J Cardiol. 2018-12-4

[6]
Assessment of lesion-specific ischemia using fractional flow reserve (FFR) profiles derived from coronary computed tomography angiography (FFRCT) and invasive pressure measurements (FFRINV): Importance of the site of measurement and implications for patient referral for invasive coronary angiography and percutaneous coronary intervention.

J Cardiovasc Comput Tomogr. 2018-9-14

[7]
Noninvasive diagnosis of ischemia-causing coronary stenosis using CT angiography: diagnostic value of transluminal attenuation gradient and fractional flow reserve computed from coronary CT angiography compared to invasively measured fractional flow reserve.

JACC Cardiovasc Imaging. 2012-11

[8]
Mathematically Derived Criteria for Detecting Functionally Significant Stenoses Using Coronary Computed Tomographic Angiography-Based Myocardial Segmentation and Intravascular Ultrasound-Measured Minimal Lumen Area.

Am J Cardiol. 2016-7-15

[9]
Diagnostic Accuracy of a Machine-Learning Approach to Coronary Computed Tomographic Angiography-Based Fractional Flow Reserve: Result From the MACHINE Consortium.

Circ Cardiovasc Imaging. 2018-6

[10]
Physiological Severity of Coronary Artery Stenosis Depends on the Amount of Myocardial Mass Subtended by the Coronary Artery.

JACC Cardiovasc Interv. 2016-7-13

引用本文的文献

[1]
The Role of Artificial Intelligence in the Prediction, Diagnosis, and Management of Cardiovascular Diseases: A Narrative Review.

Cureus. 2025-3-28

[2]
Development of a predictive model for severe peripartum hemorrhage in placenta accreta spectrum cases under neuraxial anesthesia: a multicenter retrospective analysis.

Ther Adv Reprod Health. 2025-2-12

[3]
Enhancing quantitative coronary angiography (QCA) with advanced artificial intelligence: comparison with manual QCA and visual estimation.

Int J Cardiovasc Imaging. 2025-3

[4]
What characteristics of clinical decision support system implementations lead to adoption for regular use? A scoping review.

BMJ Health Care Inform. 2024-8-24

[5]
Patient-specific 3D coronary model in cardiac catheterisation laboratories.

Front Cardiovasc Med. 2024-7-5

[6]
Artificial intelligence in cardiovascular medicine: An updated review of the literature.

J Cardiovasc Thorac Res. 2023

[7]
Non-invasive fractional flow reserve estimation using deep learning on intermediate left anterior descending coronary artery lesion angiography images.

Sci Rep. 2024-1-20

[8]
Artificial intelligence in estimating fractional flow reserve: a systematic literature review of techniques.

BMC Cardiovasc Disord. 2023-8-18

[9]
Artificial intelligence in cardiovascular diseases: diagnostic and therapeutic perspectives.

Eur J Med Res. 2023-7-21

[10]
Can artificial intelligence and robotic nurses replace operating room nurses? The quasi-experimental research.

J Robot Surg. 2023-8

本文引用的文献

[1]
Evaluation of Coronary Artery Stenosis by Quantitative Flow Ratio During Invasive Coronary Angiography: The WIFI II Study (Wire-Free Functional Imaging II).

Circ Cardiovasc Imaging. 2018-3

[2]
Diagnostic Accuracy of Angiography-Based Quantitative Flow Ratio Measurements for Online Assessment of Coronary Stenosis.

J Am Coll Cardiol. 2017-10-31

[3]
Machine Learning Approaches in Cardiovascular Imaging.

Circ Cardiovasc Imaging. 2017-10

[4]
Artificial Intelligence in Precision Cardiovascular Medicine.

J Am Coll Cardiol. 2017-5-30

[5]
Myocardial segmentation based on coronary anatomy using coronary computed tomography angiography: Development and validation in a pig model.

Eur Radiol. 2017-3-24

[6]
ACC/AATS/AHA/ASE/ASNC/SCAI/SCCT/STS 2017 Appropriate Use Criteria for Coronary Revascularization in Patients With Stable Ischemic Heart Disease: A Report of the American College of Cardiology Appropriate Use Criteria Task Force, American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and Society of Thoracic Surgeons.

J Am Coll Cardiol. 2017-5-2

[7]
Diagnostic Accuracy of Fast Computational Approaches to Derive Fractional Flow Reserve From Diagnostic Coronary Angiography: The International Multicenter FAVOR Pilot Study.

JACC Cardiovasc Interv. 2016-10-10

[8]
Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges.

Eur Heart J. 2017-6-14

[9]
Mathematically Derived Criteria for Detecting Functionally Significant Stenoses Using Coronary Computed Tomographic Angiography-Based Myocardial Segmentation and Intravascular Ultrasound-Measured Minimal Lumen Area.

Am J Cardiol. 2016-7-15

[10]
Better Diagnosis of Functionally Significant Intermediate Sized Narrowings Using Intravascular Ultrasound-Minimal Lumen Area and Coronary Computed Tomographic Angiography-Based Myocardial Segmentation.

Am J Cardiol. 2016-4-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索