Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.
Department of Cardiology, CHA Bundang Medical Center, CHA University, Seongnam, Korea.
PLoS Med. 2018 Nov 13;15(11):e1002693. doi: 10.1371/journal.pmed.1002693. eCollection 2018 Nov.
BACKGROUND: Invasive fractional flow reserve (FFR) is a standard tool for identifying ischemia-producing coronary stenosis. However, in clinical practice, over 70% of treatment decisions still rely on visual estimation of angiographic stenosis, which has limited accuracy (about 60%-65%) for the prediction of FFR < 0.80. One of the reasons for the visual-functional mismatch is that myocardial ischemia can be affected by the supplied myocardial size, which is not always evident by coronary angiography. The aims of this study were to develop an angiography-based machine learning (ML) algorithm for predicting the supplied myocardial volume for a stenosis, as measured using coronary computed tomography angiography (CCTA), and then to build an angiography-based classifier for the lesions with an FFR < 0.80 versus ≥ 0.80. METHODS AND FINDINGS: A retrospective study was conducted using data from 1,132 stable and unstable angina patients with 1,132 intermediate lesions who underwent invasive coronary angiography, FFR, and CCTA at the Asan Medical Center, Seoul, Korea, between 1 May 2012 and 30 November 2015. The mean age was 63 ± 10 years, 76% were men, and 72% of the patients presented with stable angina. Of these, 932 patients (assessed before 31 January 2015) constituted the training set for the algorithm, and 200 patients (assessed after 1 February 2015) served as a test cohort to validate its diagnostic performance. Additionally, external validation with 79 patients from two centers (CHA University, Seongnam, Korea, and Ajou University, Suwon, Korea) was conducted. After automatic contour calibration using the caliber of guiding catheter, quantitative coronary angiography was performed using the edge-detection algorithms (CAAS-5, Pie-Medical). Clinical information was provided by the Asan BiomedicaL Research Environment (ABLE) system. The CCTA-based myocardial segmentation (CAMS)-derived myocardial volume supplied by each vessel (right coronary artery [RCA], left anterior descending [LAD], left circumflex [LCX]) and the myocardial volume subtended to a stenotic segment (CAMS-%Vsub) were measured for labeling. The ML for (1) predicting vessel territories (CAMS-%LAD, CAMS-%LCX, and CAMS-%RCA) and CAMS-%Vsub and (2) identifying the lesions with an FFR < 0.80 was constructed. Angiography-based ML, employing a light gradient boosting machine (GBM), showed mean absolute errors (MAEs) of 5.42%, 8.57%, and 4.54% for predicting CAMS-%LAD, CAMS-%LCX, and CAMS-%RCA, respectively. The percent myocardial volumes predicted by ML were used to predict the CAMS-%Vsub. With 5-fold cross validation, the MAEs between ML-predicted percent myocardial volume subtended to a stenotic segment (ML-%Vsub) and CAMS-%Vsub were minimized by the elastic net (6.26% ± 0.55% for LAD, 5.79% ± 0.68% for LCX, and 2.95% ± 0.14% for RCA lesions). Using all attributes (age, sex, involved vessel segment, and angiographic features affecting the myocardial territory and stenosis degree), the ML classifiers (L2 penalized logistic regression, support vector machine, and random forest) predicted an FFR < 0.80 with an accuracy of approximately 80% (area under the curve [AUC] = 0.84-0.87, 95% confidence intervals 0.71-0.94) in the test set, which was greater than that of diameter stenosis (DS) > 53% (66%, AUC = 0.71, 95% confidence intervals 0.65-0.78). The external validation showed 84% accuracy (AUC = 0.89, 95% confidence intervals 0.83-0.95). The retrospective design, single ethnicity, and the lack of clinical outcomes may limit this prediction model's generalized application. CONCLUSION: We found that angiography-based ML is useful to predict subtended myocardial territories and ischemia-producing lesions by mitigating the visual-functional mismatch between angiographic and FFR. Assessment of clinical utility requires further validation in a large, prospective cohort study.
背景:有创的 Fractional Flow Reserve(FFR)是识别导致缺血的冠状动脉狭窄的标准工具。然而,在临床实践中,超过 70%的治疗决策仍然依赖于对血管造影狭窄的视觉估计,其对 FFR < 0.80 的预测准确性有限(约 60%-65%)。视觉-功能不匹配的原因之一是心肌缺血可能受到供应心肌大小的影响,而冠状动脉造影术并不总是能明显显示这一点。本研究的目的是开发一种基于血管造影的机器学习(ML)算法,用于预测狭窄处的供应心肌体积,该体积通过冠状动脉计算机断层血管造影(CCTA)测量,然后构建一个基于血管造影的分类器,用于区分 FFR < 0.80 与≥0.80 的病变。
方法和发现:这项回顾性研究使用了 2012 年 5 月 1 日至 2015 年 11 月 30 日期间在韩国首尔 Asan 医疗中心接受有创冠状动脉造影、FFR 和 CCTA 的 1,132 例稳定性和不稳定性心绞痛患者的数据。患者的平均年龄为 63 ± 10 岁,76%为男性,72%的患者为稳定性心绞痛。其中,932 例患者(评估于 2015 年 1 月 31 日前)被纳入算法的训练集,200 例患者(评估于 2015 年 2 月 1 日后)被纳入验证集以验证其诊断性能。此外,还在韩国成均馆大学(CHA University)和水原市 Ajou 大学进行了 79 例患者的外部验证。使用引导导管的口径进行自动轮廓校准后,使用边缘检测算法(CAAS-5,Pie-Medical)进行定量冠状动脉造影。临床信息由 Asan BiomedicaL Research Environment(ABLE)系统提供。基于 CCTA 的心肌分段(CAMS)法测量每个血管(右冠状动脉[RCA]、左前降支[LAD]、左回旋支[LCX])的供应心肌体积和狭窄段的心肌体积(CAMS-%Vsub)。建立了基于血管造影的 ML 模型,用于(1)预测血管区域(CAMS-%LAD、CAMS-%LCX 和 CAMS-%RCA)和 CAMS-%Vsub,以及(2)识别 FFR < 0.80 的病变。采用轻梯度提升机(GBM)的基于血管造影的 ML 显示,预测 CAMS-%LAD、CAMS-%LCX 和 CAMS-%RCA 的平均绝对误差(MAE)分别为 5.42%、8.57%和 4.54%。通过 ML 预测的心肌体积百分比用于预测 CAMS-%Vsub。通过 5 折交叉验证,弹性网络(ELASTIC NET)最小化了 ML 预测的狭窄段心肌体积百分比(ML-%Vsub)与 CAMS-%Vsub 之间的 MAE(LAD 为 6.26%±0.55%,LCX 为 5.79%±0.68%,RCA 病变为 2.95%±0.14%)。使用所有属性(年龄、性别、受累血管节段、影响心肌区域和狭窄程度的血管造影特征),ML 分类器(L2 惩罚逻辑回归、支持向量机和随机森林)在测试集中以约 80%的准确率(曲线下面积[AUC]为 0.84-0.87,95%置信区间为 0.71-0.94)预测 FFR < 0.80,优于直径狭窄度(DS)>53%(66%,AUC = 0.71,95%置信区间 0.65-0.78)。外部验证显示准确率为 84%(AUC = 0.89,95%置信区间 0.83-0.95)。回顾性设计、单一种族和缺乏临床结局可能限制了该预测模型的广泛应用。
结论:我们发现基于血管造影的 ML 可用于预测供应心肌区域和导致缺血的病变,减轻血管造影和 FFR 之间的视觉-功能不匹配。临床实用性的评估需要在一个大型前瞻性队列研究中进一步验证。
JACC Cardiovasc Interv. 2016-7-13
BMJ Health Care Inform. 2024-8-24
Front Cardiovasc Med. 2024-7-5
J Cardiovasc Thorac Res. 2023
BMC Cardiovasc Disord. 2023-8-18
Eur J Med Res. 2023-7-21
Circ Cardiovasc Imaging. 2017-10
J Am Coll Cardiol. 2017-5-30