Jia Pinggang, Liang Hao, Fang Guocheng, Qian Jiang, Feng Fei, Liang Ting, Xiong Jijun
Appl Opt. 2018 Aug 10;57(23):6687-6692. doi: 10.1364/AO.57.006687.
A fiber-optic Fabry-Perot pressure sensor based on a micro-electro-mechanical system (MEMS) and CO laser fusion technology is developed and experimentally demonstrated for high-temperature application. The sensing heads are batch-fabricated by anodically bonding the micromachined Pyrex glass wafer and local gold-plated silicon wafer. The separated sensing head and the single-mode fiber are fused together to form the Fabry-Perot cavity using the CO laser. In order to improve the measurement accuracy in a high-temperature environment, a fiber Bragg grating is used as a temperature sensor for temperature decoupling. The experimental results show that the fiber-optic Fabry-Perot pressure sensor has a maximum nonlinearity of 0.4%. The maximal error of the pressure after temperature decoupling is less than 1.05% over a pressure range of 0-0.5 MPa and a temperature range of 20°C-350°C. The batch fabrication technology makes the sensors low cost and high uniformity.
基于微机电系统(MEMS)和CO激光熔接技术开发了一种用于高温应用的光纤法布里-珀罗压力传感器,并进行了实验验证。传感头通过阳极键合微加工的派热克斯玻璃晶圆和局部镀金的硅晶圆进行批量制造。使用CO激光将分离的传感头与单模光纤熔接在一起,形成法布里-珀罗腔。为了提高高温环境下的测量精度,使用光纤布拉格光栅作为温度传感器进行温度解耦。实验结果表明,光纤法布里-珀罗压力传感器的最大非线性度为0.4%。在0-0.5MPa的压力范围和20°C-350°C的温度范围内,温度解耦后的压力最大误差小于1.05%。批量制造技术使传感器成本低且均匀性高。