Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA.
BioPlx Microbiomics, Boulder, CO, USA.
Arch Toxicol. 2018 Oct;92(10):3163-3173. doi: 10.1007/s00204-018-2285-x. Epub 2018 Aug 21.
Polychlorinated biphenyls (PCBs), and in particular non-dioxin-like (NDL) congeners, continue to pose a significant risk to the developing nervous system. PCB 95, a prevalent NDL congener in the human chemosphere, promotes dendritic growth in rodent primary neurons by activating calcium-dependent transcriptional mechanisms that normally function to link activity to dendritic growth. Activity-dependent dendritic growth is also mediated by calcium-dependent translational mechanisms involving mechanistic target of rapamycin (mTOR), suggesting that the dendrite-promoting activity of PCB 95 may also involve mTOR signaling. Here, we test this hypothesis using primary neuron-glia co-cultures derived from the hippocampi of postnatal day 0 Sprague Dawley rats. PCB 95 (1 nM) activated mTOR in hippocampal cultures as evidenced by increased phosphorylation of mTOR at ser2448. Pharmacologic inhibition of mTOR signaling using rapamycin (20 nM), FK506 (5 nM), or 4EGI-1 (1 µM), and siRNA knockdown of mTOR, or the mTOR complex binding proteins, raptor or rictor, blocked PCB 95-induced dendritic growth. These data identify mTOR activation as a novel molecular mechanism contributing to the effects of PCB 95 on dendritic arborization. In light of clinical data linking gain-of-function mutations in mTOR signaling to neurodevelopmental disorders, our findings suggest that mTOR signaling may represent a convergence point for gene by environment interactions that confer risk for adverse neurodevelopmental outcomes.
多氯联苯(PCBs),尤其是非二恶英类(NDL)同系物,继续对发育中的神经系统构成重大威胁。PCB95 是人类化学环境中普遍存在的 NDL 同系物,通过激活通常用于将活动与树突生长联系起来的钙依赖性转录机制,促进啮齿动物原代神经元的树突生长。活性依赖性树突生长也由涉及雷帕霉素靶蛋白(mTOR)的钙依赖性翻译机制介导,这表明 PCB95 的促树突活性也可能涉及 mTOR 信号通路。在这里,我们使用源自新生第 0 天 Sprague Dawley 大鼠海马的原代神经元-神经胶质共培养物来检验这一假设。PCB95(1 nM)激活了海马培养物中的 mTOR,这表现为 mTOR 在丝氨酸 2448 处的磷酸化增加。使用雷帕霉素(20 nM)、FK506(5 nM)或 4EGI-1(1 µM)抑制 mTOR 信号通路,或使用 mTOR 特异性 siRNA 敲低 mTOR 或 mTOR 复合物结合蛋白 raptor 或 rictor,均可阻断 PCB95 诱导的树突生长。这些数据确定了 mTOR 激活是 PCB95 对树突分支影响的新分子机制。鉴于将 mTOR 信号传导的功能获得性突变与神经发育障碍相关联的临床数据,我们的研究结果表明,mTOR 信号可能代表基因与环境相互作用的交汇点,这些相互作用赋予了不利的神经发育结果的风险。