Luxa Jan, Kupka Petr, Lipilin Fedor, Šturala Jiří, Subramani Amutha, Lazar Petr, Sofer Zdeněk
Department of Inorganic Chemistry, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic.
Regional Centre of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic.
ACS Catal. 2024 Oct 2;14(20):15336-15347. doi: 10.1021/acscatal.4c04099. eCollection 2024 Oct 18.
MAX phases represent a crucial building block for the synthesis of MXenes, which constitute an intriguing class of materials with significant application potential. This study investigates the catalytic properties of the MoTiAlC MAX phase and the corresponding MoTiCT MXene for the hydrogen evolution reaction (HER). Characterization by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) revealed that despite the presence of secondary phases, the HER catalytic activity is primarily influenced by the MAX phase and its derived MXene. Interestingly, the catalytic activity of the MXene improves over time, attributed to the formation of MoO as identified by XPS. This work enhances the understanding of MXene-based materials for electrochemical applications, highlighting crucial structural and chemical transformations that optimize their performance in energy conversion technologies.
MAX相是合成MXene的关键组成部分,MXene是一类具有重要应用潜力的有趣材料。本研究考察了MoTiAlC MAX相及相应的MoTiCT MXene对析氢反应(HER)的催化性能。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)和X射线光电子能谱(XPS)表征发现,尽管存在次生相,但HER催化活性主要受MAX相及其衍生的MXene影响。有趣的是,MXene的催化活性随时间提高,这归因于XPS鉴定出的MoO的形成。这项工作增进了对基于MXene的材料在电化学应用方面的理解,突出了优化其在能量转换技术中性能的关键结构和化学转变。