Department of Chemistry, Nebraska Center for Materials and Nanoscience, and Center for Integrated Biomolecular Communication , University of Nebraska-Lincoln , Lincoln , Nebraska 68588-0304 , United States.
Ben May Department for Cancer Research , The University of Chicago , Chicago , Illinois 60637 , United States.
J Chem Inf Model. 2018 Sep 24;58(9):1926-1934. doi: 10.1021/acs.jcim.8b00406. Epub 2018 Sep 6.
Insulin degrading enzyme (IDE), a metalloprotease that degrades amyloid-β (Aβ) peptides and insulin, is associated with Alzheimer's disease and diabetes. The mechanism of IDE catalyzed degrading of Aβ peptides, which is of fundamental importance in the design of therapeutic methods for Alzheimer's disease, has not been fully understood. In this work, combined quantum mechanics and molecular mechanics (QM/MM) style Møller-Plesset second order perturbation theory (MP2) geometry optimization calculations are performed to investigate the catalytic mechanism of the Aβ40 Phe19-Phe20 peptide bond cleavage by human IDE. The analyses using QM/MM MP2 optimization suggest that a neutral water molecule is at the active site of the enzyme-substrate (ES) complex. The water molecule is in hydrogen bonding with the nearby anionic Glu111 of IDE but not directly bound to the catalytic Zn ion. This is confirmed by QM/MM DFTB3 molecular dynamics simulation. Our studies also reveal that the hydrolysis of the Aβ40 Phe19-Phe20 peptide bond by IDE consists of four key steps. The neutral water is first activated by moving toward and binding to the Zn ion. A gem-diol intermediate is then formed by the activated neutral water molecule attacking the C atom of the Phe19-Phe20 peptide bond. The next is the protonation of the N atom of Phe19-Phe20 peptide bond to form an intermediate with an elongated C-N bond. The final step is the breaking of the Phe19-Phe20 C-N bond. The final step is the rate-determining step with a calculated Gibbs free energy of activation of 17.34 kcal/mol, in good agreement with the experimental value 16.7 kcal/mol. This mechanism provides the basis for the design of biochemical methods to modulate the activity of IDE in humans.
胰岛素降解酶(IDE)是一种金属蛋白酶,可降解淀粉样β(Aβ)肽和胰岛素,与阿尔茨海默病和糖尿病有关。IDE 催化 Aβ 肽降解的机制对于阿尔茨海默病治疗方法的设计至关重要,但尚未完全理解。在这项工作中,我们进行了组合量子力学和分子力学(QM/MM)样式 Møller-Plesset 二级微扰理论(MP2)几何优化计算,以研究人 IDE 切割 Aβ40 Phe19-Phe20 肽键的催化机制。使用 QM/MM MP2 优化的分析表明,中性水分子位于酶-底物(ES)复合物的活性部位。水分子与 IDE 附近的带负电荷的 Glu111 形成氢键,但不直接与催化 Zn 离子结合。这一点通过 QM/MM DFTB3 分子动力学模拟得到了证实。我们的研究还表明,IDE 水解 Aβ40 Phe19-Phe20 肽键由四个关键步骤组成。中性水分子首先通过向 Zn 离子移动并与之结合而被激活。然后,由活化的中性水分子攻击 Phe19-Phe20 肽键的 C 原子形成二羟基中间体。接下来,对 Phe19-Phe20 肽键的 N 原子进行质子化,形成一个 C-N 键拉长的中间产物。最后一步是打破 Phe19-Phe20 C-N 键。最后一步是速率决定步骤,计算得到的活化吉布斯自由能为 17.34 kcal/mol,与实验值 16.7 kcal/mol 吻合较好。该机制为设计调节人 IDE 活性的生化方法提供了基础。