Suppr超能文献

金属肽酶及其合成类似物功能的理论见解。

Theoretical insights into the functioning of metallopeptidases and their synthetic analogues.

机构信息

Department of Chemistry, University of Miami , Coral Gables, Florida 33146, United States.

出版信息

Acc Chem Res. 2015 Feb 17;48(2):192-200. doi: 10.1021/ar500301y. Epub 2015 Jan 21.

Abstract

CONSPECTUS

The selective hydrolysis of a peptide or amide bond (-(O═)C-NH-) by a synthetic metallopeptidase is required in a wide range of biological, biotechnological, and industrial applications. In nature, highly specialized enzymes known as proteases and peptidases are used to accomplish this daunting task. Currently, many peptide bond cleaving enzymes and synthetic reagents have been utilized to achieve efficient peptide hydrolysis. However, they possess some serious limitations. To overcome these inadequacies, a variety of metal complexes have been developed that mimic the activities of natural enzymes (metallopeptidases). However, in comparison to metallopeptidases, the hydrolytic reactions facilitated by their existing synthetic analogues are considerably slower and occur with lower catalytic turnover. This could be due to the following reasons: (1) they lack chemical properties of amino acid residues found within enzyme active sites; (2) they contain a higher metal coordination number compared with naturally occurring enzymes; and (3) they do not have access to second coordination shell residues that provide substantial rate enhancements in enzymes. Additionally, the critical structural and mechanistic information required for the development of the next generation of synthetic metallopeptidases cannot be readily obtained through existing experimental techniques. This is because most experimental techniques cannot follow the individual chemical steps in the catalytic cycle due to the fast rate of enzymes. They are also limited by the fact that the diamagnetic d(10) Zn(II) center is silent to electronic, electron spin resonance, and (67)Zn NMR spectroscopies. Therefore, we have employed molecular dynamics (MD), quantum mechanics (QM), and hybrid quantum mechanics/molecular mechanics (QM/MM) techniques to derive this information. In particular, the role of the metal ions, ligands, and microenvironment in the functioning of mono- and binuclear metal center containing enzymes such as insulin degrading enzyme (IDE) and bovine lens leucine aminopeptidase (BILAP), respectively, and their synthetic analogues have been investigated. Our results suggested that in the functioning of IDE, the chemical nature of the peptide bond played a role in the energetics of the reaction and the peptide bond cleavage occurred in the rate-limiting step of the mechanism. In the cocatalytic mechanism used by BILAP, one metal center polarized the scissile peptide bond through the formation of a bond between the metal and the carbonyl group of the substrate, while the second metal center delivered the hydroxyl nucleophile. The Zn(N3) [Zn(His, His, His)] core of matrix metalloproteinase was better than the Zn(N2O) [Zn(His, His, Glu)] core of IDE for peptide hydrolysis. Due to the synergistic interaction between the two metal centers, the binuclear metal center containing Pd2(μ-OH)([18]aneN6)](4+) complex was found to be ∼100 times faster than the mononuclear Pd(H2O)4 complex. A successful small-molecule synthetic analogue of a mononuclear metallopeptidase must contain a metal with a strong Lewis acidity capable of reducing the pKa of its water ligand to less than 7. Ideally, the metal center should include three ligands with low basicity. The steric effects or strain exerted by the microenvironment could be used to weaken the metal-ligand interactions and increase the activity of the metallopeptidase.

摘要

概述

在广泛的生物、生物技术和工业应用中,需要通过合成金属肽酶选择性水解肽或酰胺键(-(O═)C-NH-)。在自然界中,高度专业化的酶,如蛋白酶和肽酶,被用于完成这项艰巨的任务。目前,已经利用了许多肽键裂解酶和合成试剂来实现有效的肽水解。然而,它们存在一些严重的局限性。为了克服这些不足,已经开发了各种金属配合物来模拟天然酶(金属肽酶)的活性。然而,与金属肽酶相比,其现有合成类似物介导的水解反应速度要慢得多,催化周转率也低。这可能是由于以下原因:(1)它们缺乏酶活性位点中氨基酸残基的化学性质;(2)与天然存在的酶相比,它们具有更高的金属配位数;(3)它们无法接触到提供酶中显著速率增强的第二配位壳残基。此外,由于酶的反应速度很快,通过现有的实验技术无法轻易获得开发下一代合成金属肽酶所需的关键结构和机制信息。这是因为大多数实验技术由于酶的反应速度很快,无法跟踪催化循环中的单个化学步骤。它们还受到以下事实的限制:顺磁 d(10) Zn(II) 中心对电子、电子自旋共振和 (67)Zn NMR 光谱学是沉默的。因此,我们采用了分子动力学(MD)、量子力学(QM)和混合量子力学/分子力学(QM/MM)技术来获取这些信息。特别是,我们研究了单金属中心和双核金属中心包含的酶(如胰岛素降解酶 (IDE) 和牛晶状体亮氨酸氨肽酶 (BILAP))以及它们的合成类似物中金属离子、配体和微环境的作用。我们的研究结果表明,在 IDE 的功能中,肽键的化学性质在反应的能量学中起作用,并且肽键在机制的限速步骤中发生断裂。在 BILAP 所使用的共催化机制中,一个金属中心通过金属与底物羰基之间的键形成来极化可裂解的肽键,而第二个金属中心提供羟基亲核试剂。基质金属蛋白酶的 Zn(N3)[Zn(His, His, His)]核优于 IDE 的 Zn(N2O)[Zn(His, His, Glu)]核,更有利于肽水解。由于两个金属中心之间的协同相互作用,双核金属中心包含 Pd2(μ-OH)([18]aneN6)])(4+)的配合物被发现比单核 [Pd(H2O)4)])(2+)配合物快约 100 倍。单核金属肽酶的成功小分子合成类似物必须包含具有强路易斯酸度的金属,能够将其水配体的 pKa 降低到 7 以下。理想情况下,金属中心应包含三个低碱性的配体。微环境施加的空间效应或应变可用于削弱金属-配体相互作用并提高金属肽酶的活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验