Ben-May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA.
Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):13827-32. doi: 10.1073/pnas.1304575110. Epub 2013 Aug 6.
Insulin-degrading enzyme (IDE) selectively degrades the monomer of amyloidogenic peptides and contributes to clearance of amyloid β (Aβ). Thus, IDE retards the progression of Alzheimer's disease. IDE possesses an enclosed catalytic chamber that engulfs and degrades its peptide substrates; however, the molecular mechanism of IDE function, including substrate access to the chamber and recognition, remains elusive. Here, we captured a unique IDE conformation by using a synthetic antibody fragment as a crystallization chaperone. An unexpected displacement of a door subdomain creates an ~18-Å opening to the chamber. This swinging-door mechanism permits the entry of short peptides into the catalytic chamber and disrupts the catalytic site within IDE door subdomain. Given the propensity of amyloidogenic peptides to convert into β-strands for their polymerization into amyloid fibrils, they also use such β-strands to stabilize the disrupted catalytic site resided at IDE door subdomain for their degradation by IDE. Thus, action of the swinging door allows IDE to recognize amyloidogenicity by substrate-induced stabilization of the IDE catalytic cleft. Small angle X-ray scattering (SAXS) analysis revealed that IDE exists as a mixture of closed and open states. These open states, which are distinct from the swinging door state, permit entry of larger substrates (e.g., Aβ, insulin) to the chamber and are preferred in solution. Mutational studies confirmed the critical roles of the door subdomain and hinge loop joining the N- and C-terminal halves of IDE for catalysis. Together, our data provide insights into the conformational changes of IDE that govern the selective destruction of amyloidogenic peptides.
胰岛素降解酶(IDE)选择性地降解淀粉样肽的单体,并有助于清除淀粉样 β(Aβ)。因此,IDE 可延缓阿尔茨海默病的进展。IDE 具有一个封闭的催化腔,可吞噬并降解其肽底物;然而,IDE 功能的分子机制,包括底物进入腔室和识别,仍然难以捉摸。在这里,我们使用合成抗体片段作为结晶伴侣捕获了独特的 IDE 构象。门亚结构域的意外位移产生了一个~18Å 的腔室开口。这种摆动门机制允许短肽进入催化腔,并破坏 IDE 门亚结构域内的催化位点。鉴于淀粉样肽倾向于转化为β-链以聚合形成淀粉样纤维,它们还使用这种β-链来稳定位于 IDE 门亚结构域中的破坏的催化位点,以使其被 IDE 降解。因此,摆动门的作用允许 IDE 通过底物诱导 IDE 催化裂缝的稳定来识别淀粉样肽。小角度 X 射线散射(SAXS)分析表明,IDE 以闭合和开放状态的混合物形式存在。这些不同于摆动门状态的开放状态允许更大的底物(例如 Aβ、胰岛素)进入腔室,并在溶液中更受欢迎。突变研究证实了门亚结构域和连接 IDE N 端和 C 端两半的铰链环在催化中的关键作用。总之,我们的数据提供了 IDE 构象变化的见解,这些变化控制着淀粉样肽的选择性破坏。