Lucas Michael, Thomas Aaron M, Yang Tao, Kaiser Ralf I, Mebel Alexander M, Hait Diptarka, Head-Gordon Martin
Department of Chemistry , University of Hawai'i at Manoa , Honolulu , Hawaii 96822 , United States.
Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States.
J Phys Chem Lett. 2018 Sep 6;9(17):5135-5142. doi: 10.1021/acs.jpclett.8b02303. Epub 2018 Aug 27.
We present a combined experimental and theoretical investigation of the bimolecular gas-phase reaction of the phenyl radical (CH) with silane (SiH) under single collision conditions to investigate the chemical dynamics of forming phenylsilane (CHSiH) via a bimolecular radical substitution mechanism at a tetracoordinated silicon atom. Verified by electronic structure and quasiclassical trajectory calculations, the replacement of a single carbon atom in methane by silicon lowers the barrier to substitution, thus defying conventional wisdom that tetracoordinated hydrides undergo preferentially hydrogen abstraction. This reaction mechanism provides fundamental insights into the hitherto unexplored gas-phase chemical dynamics of radical substitution reactions of mononuclear main group hydrides under single collision conditions and highlights the distinct reactivity of silicon compared to its isovalent carbon. This mechanism might be also involved in the synthesis of cyanosilane (SiHCN) and methylsilane (CHSiH) probed in the circumstellar envelope of the carbon star IRC+10216.
我们进行了一项结合实验与理论的研究,考察在单碰撞条件下苯基自由基(CH)与硅烷(SiH)的双分子气相反应,以探究通过在四配位硅原子上的双分子自由基取代机理形成苯基硅烷(CHSiH)的化学动力学。通过电子结构和准经典轨迹计算验证,甲烷中单个碳原子被硅取代降低了取代势垒,从而违背了传统观念,即四配位氢化物优先进行氢提取。该反应机理为迄今未探索的单碰撞条件下单核主族氢化物自由基取代反应的气相化学动力学提供了基本见解,并突出了硅与其等价位碳相比独特的反应活性。这种机理可能也参与了在碳星IRC + 10216的星际包层中探测到的氰基硅烷(SiHCN)和甲基硅烷(CHSiH)的合成。