Squier T C, Thomas D D
Biophys J. 1986 Apr;49(4):937-42. doi: 10.1016/S0006-3495(86)83721-3.
The presence of small amounts of weakly immobilized probes can result in large systematic errors in the measurement of correlation times (tau r) from saturation transfer EPR spectra. However, we have recently developed experimental methodology to minimize these errors (Squier and Thomas, Biophys. J., 49:921-935). In the present study we have applied this methodology to the measurement of the rotational motion of the Ca-ATPase in sarcoplasmic reticulum. This analysis involves the estimate of tau r from line-shape parameters (spectral line-height ratios) and intensity parameters (spectral integral), coupled with digital subtractions to remove spectral components corresponding to weakly immobilized probes. We have analyzed the ST-EPR spectra of the Ca-ATPase over a range of temperatures and find that, unlike line-shape parameters, intensity parameters are little affected by the subtraction of the weakly immobilized spectral component (W). Thus, tau r values from intensity parameters are a more reliable measurement of rotational motion. As reported previously, an analysis with line-shape parameters yields a nonlinear Arrhenius plot of protein mobility. However, the plot is linear when intensity parameters or corrected spectra are used, consistent with the theory for the hydrodynamic properties of a membrane protein of unchanging size and shape in a fluid bilayer. An analysis with line-shape parameters yields different effective tau r values in different spectral regions, and these tau r values are temperature-dependent. However, correction of spectra for W yields temperature-independent tau r ratios, indicating that the motional anisotropy is temperature-independent. Obtaining a good match for the weakly immobilized spectral component remains a major difficulty in the quantitative analysis of ST-EPR spectra using line-shape parameters. This study shows that intensity parameters can be used to avoid this problem, making the ST-EPR technique applicable in cases that were previously resistant to analysis.
少量弱固定化探针的存在会导致在通过饱和转移电子顺磁共振光谱测量相关时间(τr)时产生较大的系统误差。然而,我们最近开发了实验方法来最小化这些误差(Squier和Thomas,《生物物理学杂志》,49:921 - 935)。在本研究中,我们将此方法应用于肌浆网中钙 - ATP酶旋转运动的测量。该分析涉及从线形参数(谱线高度比)和强度参数(谱积分)估计τr,并结合数字减法以去除对应于弱固定化探针的光谱成分。我们分析了在一系列温度下钙 - ATP酶的饱和转移电子顺磁共振光谱,发现与线形参数不同,强度参数受弱固定化光谱成分(W)减法的影响很小。因此,由强度参数得出的τr值是旋转运动更可靠的测量值。如先前报道,用线形参数进行分析会得出蛋白质流动性的非线性阿伦尼乌斯图。然而,当使用强度参数或校正后的光谱时,该图是线性的,这与流体双层中大小和形状不变的膜蛋白的流体动力学性质理论一致。用线形参数进行分析在不同光谱区域会产生不同的有效τr值,并且这些τr值与温度有关。然而,对W进行光谱校正会得出与温度无关的τr比值,表明运动各向异性与温度无关。在使用线形参数对饱和转移电子顺磁共振光谱进行定量分析时,获得与弱固定化光谱成分的良好匹配仍然是一个主要困难。这项研究表明强度参数可用于避免此问题,使饱和转移电子顺磁共振技术适用于以前难以分析的情况。