Suppr超能文献

预测和测试无筒仓输送系统。

Predicting and testing a silo-free delivery system.

作者信息

Pepler Eileen Florence, Pridie Joy, Brown Steve

机构信息

1 Athabasca University Faculty of Business, Athabasca, Alberta, Canada.

2 Consultant, Pepler Group, Calgary, Alberta, Canada.

出版信息

Healthc Manage Forum. 2018 Sep;31(5):200-205. doi: 10.1177/0840470418793910. Epub 2018 Aug 22.

Abstract

Given the scale and complexity of the challenge of addressing the aging population, increasing demand for complex and integrated care, this article sets out potential opportunities to predict a future without silos, based on international learnings. Examining another country's health and delivery systems, it is interesting to see the similarities and differences, so we offer some reflections applicable to Canada. These models are breaking down the silos. Imagine a setting where you could collaboratively co-design scenarios, debate, refine policy, and predict future population needs. Using a transformation lab setting, governments and policy-makers, providers, patients, families, and community support groups could collaboratively take the time to learn new ways of working together in a risk-free environment before becoming accountable for delivering targeted outcomes. It is time to implement provincial transformation labs to test local strategies and operational plans to co-design scenarios, use simulation, and test the choices using evidence-based tools.

摘要

鉴于应对人口老龄化挑战的规模和复杂性,以及对复杂和综合护理的需求不断增加,本文基于国际经验,阐述了预测一个无壁垒未来的潜在机遇。审视另一个国家的卫生和医疗服务体系,观察其异同之处很有意思,因此我们提供了一些适用于加拿大的思考。这些模式正在打破壁垒。想象这样一个场景,在其中你可以共同协作设计方案、展开辩论、完善政策并预测未来的人口需求。利用转型实验室的环境,政府、政策制定者、提供者、患者、家庭和社区支持团体可以共同花时间在无风险的环境中学习新的合作方式,然后再为实现目标成果负责。现在是时候设立省级转型实验室,以测试地方战略和运营计划,共同设计方案,运用模拟,并使用循证工具来测试各种选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验