Suppr超能文献

利用微波等离子体大规模合成独立式氮掺杂石墨烯。

Large-scale synthesis of free-standing N-doped graphene using microwave plasma.

作者信息

Bundaleska N, Henriques J, Abrashev M, Botelho do Rego A M, Ferraria A M, Almeida A, Dias F M, Valcheva E, Arnaudov B, Upadhyay K K, Montemor M F, Tatarova E

机构信息

Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, 1049, Portugal.

Faculty of Physics, Sofia University, 1164, Sofia, Bulgaria.

出版信息

Sci Rep. 2018 Aug 22;8(1):12595. doi: 10.1038/s41598-018-30870-3.

Abstract

Direct assembling of N-graphene, i.e. nitrogen doped graphene, in a controllable manner was achieved using microwave plasmas at atmospheric pressure conditions. The synthesis is accomplished via a single step using ethanol and ammonia as carbon and nitrogen precursors. Tailoring of the high-energy density plasma environment results in a selective synthesis of N-graphene (~0.4% doping level) in a narrow range of externally controlled operational conditions, i.e. precursor and background gas fluxes, plasma reactor design and microwave power. Applying infrared (IR) and ultraviolet (UV) irradiation to the flow of free-standing sheets in the post-plasma zone carries out changes in the percentage of sp, the N doping type and the oxygen functionalities. X-ray photoelectron spectroscopy (XPS) revealed the relative extension of the graphene sheets π-system and the type of nitrogen chemical functions present in the lattice structure. Scanning Electron microscopy (SEM), Transmission Electron microscopy (TEM) and Raman spectroscopy were applied to determine morphological and structural characteristics of the sheets. Optical emission and FT-IR spectroscopy were applied for characterization of the high-energy density plasma environment and outlet gas stream. Electrochemical measurements were also performed to elucidate the electrochemical behavior of NG for supercapacitor applications.

摘要

在大气压条件下利用微波等离子体实现了以可控方式直接组装氮掺杂石墨烯(N-石墨烯)。该合成过程通过一步反应完成,使用乙醇和氨作为碳源和氮源前驱体。在外部可控的操作条件(即前驱体和背景气体通量、等离子体反应器设计以及微波功率)的狭窄范围内,通过调整高能密度等离子体环境可选择性地合成N-石墨烯(掺杂水平约为0.4%)。在等离子体后区域对独立薄片流施加红外(IR)和紫外(UV)辐射,会使sp杂化百分比、氮掺杂类型以及氧官能团发生变化。X射线光电子能谱(XPS)揭示了石墨烯薄片π-体系的相对延展情况以及晶格结构中存在的氮化学官能团类型。应用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和拉曼光谱来确定薄片的形态和结构特征。利用光发射光谱和傅里叶变换红外光谱(FT-IR)对高能密度等离子体环境和出口气流进行表征。还进行了电化学测量以阐明N-石墨烯在超级电容器应用中的电化学行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb4a/6105711/89dbb5cb597a/41598_2018_30870_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验