Polishchuk Dmytro, Tykhonenko-Polishchuk Yuliya, Borynskyi Vladyslav, Kravets Anatolii, Tovstolytkin Alexandr, Korenivski Vladislav
Nanostructure Physics, Royal Institute of Technology, 10691, Stockholm, Sweden.
Institute of Magnetism, NAS of Ukraine and MES of Ukraine, 03142, Kyiv, Ukraine.
Nanoscale Res Lett. 2018 Aug 22;13(1):245. doi: 10.1186/s11671-018-2669-0.
Mechanisms of the recently demonstrated ex-situ thermal control of the indirect exchange coupling in magnetic multilayer are discussed for different designs of the spacer layer. Temperature-induced changes in the hysteresis of magnetization are shown to be associated with different types of competing interlayer exchange interactions. Theoretical analysis indicates that the measured step-like shape and hysteresis of the magnetization loops is due to local in-plane magnetic anisotropy of nano-crystallites within the strongly ferromagnetic films. Comparison of the experiment and theory is used to contrast the mechanisms of the magnetization switching based on the competition of (i) indirect (RKKY) and direct (non-RKKY) interlayer exchange interactions as well as (ii) indirect ferromagnetic and indirect antiferromagnetic (both of RKKY type) interlayer exchange. These results, detailing the rich magnetic phase space of the system, should help enable the practical use of RKKY for thermally switching the magnetization in magnetic multilayers.
针对间隔层的不同设计,讨论了最近所证明的磁性多层膜中间接交换耦合的非原位热控制机制。温度引起的磁化滞后变化被证明与不同类型的竞争层间交换相互作用有关。理论分析表明,所测量的磁化回线的阶梯状形状和滞后现象是由于强铁磁薄膜内纳米微晶的局部面内磁各向异性所致。通过实验与理论的比较,对比了基于以下两种竞争机制的磁化翻转机制:(i)间接(RKKY)和直接(非RKKY)层间交换相互作用,以及(ii)间接铁磁和间接反铁磁(均为RKKY类型)层间交换。这些结果详细描述了系统丰富的磁相空间,应有助于实现RKKY在磁性多层膜中热切换磁化的实际应用。