Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA.
Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, Xian Jiaotong University, Xi'an, Shaanxi, 710049, China.
Adv Mater. 2018 Sep;30(39):e1803612. doi: 10.1002/adma.201803612. Epub 2018 Aug 22.
E-field control of antiferromagnetic (AFM) orders is promising for the realization of fast, compact, and energy-efficient AFM applications. However, as the AFM spins are strongly pinned, the E-field control process is mainly based on the exchange bias regulation that usually confines at a low temperature. Here, a new magnetoelectric (ME) coupling mechanism for the modulation of AFM orders at room temperature is explored. Based on the FeCoB/Ru/FeCoB/(011) Pb(Mg Nb )O -PbTiO (PMN-PT) synthetic antiferromagnetic (SAF) heterostructures, the external E-field generates relative magnetization switching in the two ferromagnetic (FM) layers, leading the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction tuning. This voltage-induced switching behavior can be repeated in a stable and reversible manner for various SAFs, which is a key challenge in the E-field control of AFM coupling and is not resolved yet. The voltage-induced RKKY interaction changes by analyzing the dynamic optical and acoustic modes is quantified, and with first-principles calculations, it is found that the distortion of the Fermi surface by the lattice reconstruction is the key of the relative magnetization switching and RKKY interaction modulation. This voltage control of the RKKY interaction in ME heterostructures provides an easy way to achieve the next generation of AFM/FM spintronic applications.
电场控制反铁磁(AFM)有序有望实现快速、紧凑和高能效的 AFM 应用。然而,由于 AFM 自旋被强烈钉扎,电场控制过程主要基于交换偏置调节,通常局限于低温。在这里,探索了一种新的磁电(ME)耦合机制,用于室温下 AFM 有序的调制。基于 FeCoB/Ru/FeCoB/(011)Pb(Mg Nb )O-PbTiO(PMN-PT)合成反铁磁(SAF)异质结构,外加电场会在两个铁磁(FM)层中产生相对磁化切换,从而调节 Ruderman-Kittel-Kasuya-Yosida(RKKY)相互作用。这种电压诱导的开关行为可以在各种 SAF 中以稳定和可重复的方式重复,这是 AFM 耦合电场控制中的一个关键挑战,目前尚未得到解决。通过分析动态光学和声学模式来量化电压诱导的 RKKY 相互作用变化,并通过第一性原理计算发现,晶格重构引起的费米面畸变是相对磁化切换和 RKKY 相互作用调制的关键。这种在 ME 异质结构中对 RKKY 相互作用的电压控制为实现下一代 AFM/FM 自旋电子应用提供了一种简便的方法。