Department of Biology, Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA.
The Department of Applied Statistics, Kyonggi University, Suwon, South Korea.
Mol Biol Evol. 2018 Nov 1;35(11):2805-2818. doi: 10.1093/molbev/msy162.
Phylogeny estimation is difficult for closely related populations and species, especially if they have been exchanging genes. We present a hierarchical Bayesian, Markov-chain Monte Carlo method with a state space that includes all possible phylogenies in a full Isolation-with-Migration model framework. The method is based on a new type of genealogy augmentation called a "hidden genealogy" that enables efficient updating of the phylogeny. This is the first likelihood-based method to fully incorporate directional gene flow and genetic drift for estimation of a species or population phylogeny. Application to human hunter-gatherer populations from Africa revealed a clear phylogenetic history, with strong support for gene exchange with an unsampled ghost population, and relatively ancient divergence between a ghost population and modern human populations, consistent with human/archaic divergence. In contrast, a study of five chimpanzee populations reveals a clear phylogeny with several pairs of populations having exchanged DNA, but does not support a history with an unsampled ghost population.
系统发育估计对于密切相关的种群和物种来说是困难的,特别是如果它们一直在交换基因的话。我们提出了一种分层贝叶斯、马尔可夫链蒙特卡罗方法,其状态空间包含了完全隔离-迁移模型框架中所有可能的系统发育。该方法基于一种称为“隐藏系统发育”的新的谱系增强类型,它可以有效地更新系统发育。这是第一个基于似然的方法,可完全纳入定向基因流和遗传漂变,以估计物种或种群的系统发育。对来自非洲的人类狩猎采集者种群的应用揭示了一个清晰的系统发育历史,强烈支持与未抽样的幽灵种群进行基因交换,以及幽灵种群与现代人类种群之间相对古老的分化,这与人类/古人类的分化是一致的。相比之下,对五个黑猩猩种群的研究揭示了一个清晰的系统发育,有几对种群之间发生了 DNA 交换,但不支持存在未抽样的幽灵种群的历史。