Suppr超能文献

不同人口模型下基于基因组数据的进化分歧贝叶斯分析

Bayesian Analysis of Evolutionary Divergence with Genomic Data under Diverse Demographic Models.

作者信息

Chung Yujin, Hey Jody

机构信息

Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA.

Department of Biology, Temple University, Philadelphia, PA.

出版信息

Mol Biol Evol. 2017 Jun 1;34(6):1517-1528. doi: 10.1093/molbev/msx070.

Abstract

We present a new Bayesian method for estimating demographic and phylogenetic history using population genomic data. Several key innovations are introduced that allow the study of diverse models within an Isolation-with-Migration framework. The new method implements a 2-step analysis, with an initial Markov chain Monte Carlo (MCMC) phase that samples simple coalescent trees, followed by the calculation of the joint posterior density for the parameters of a demographic model. In step 1, the MCMC sampling phase, the method uses a reduced state space, consisting of coalescent trees without migration paths, and a simple importance sampling distribution without the demography of interest. Once obtained, a single sample of trees can be used in step 2 to calculate the joint posterior density for model parameters under multiple diverse demographic models, without having to repeat MCMC runs. Because migration paths are not included in the state space of the MCMC phase, but rather are handled by analytic integration in step 2 of the analysis, the method is scalable to a large number of loci with excellent MCMC mixing properties. With an implementation of the new method in the computer program MIST, we demonstrate the method's accuracy, scalability, and other advantages using simulated data and DNA sequences of two common chimpanzee subspecies: Pan troglodytes (P. t.) troglodytes and P. t. verus.

摘要

我们提出了一种利用群体基因组数据估计种群统计学和系统发育历史的新贝叶斯方法。引入了几个关键创新点,使得能够在“隔离-迁移”框架内研究多种模型。新方法实施两步分析,第一步是马尔可夫链蒙特卡罗(MCMC)阶段,对简单的合并树进行采样,然后计算种群统计学模型参数的联合后验密度。在第一步MCMC采样阶段,该方法使用简化的状态空间,由没有迁移路径的合并树组成,并使用一个没有目标种群统计学的简单重要性采样分布。一旦获得,单个树样本可用于第二步,以计算多种不同种群统计学模型下模型参数的联合后验密度,而无需重复MCMC运行。由于迁移路径不包含在MCMC阶段的状态空间中,而是在分析的第二步通过解析积分处理,该方法可扩展到大量位点,具有出色的MCMC混合特性。通过在计算机程序MIST中实现新方法,我们使用模拟数据以及两种普通黑猩猩亚种——黑猩猩指名亚种(P. t. troglodytes)和黑猩猩西部亚种(P. t. verus)的DNA序列,证明了该方法的准确性、可扩展性及其他优势。

相似文献

1
Bayesian Analysis of Evolutionary Divergence with Genomic Data under Diverse Demographic Models.
Mol Biol Evol. 2017 Jun 1;34(6):1517-1528. doi: 10.1093/molbev/msx070.
2
Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7.
Syst Biol. 2018 Sep 1;67(5):901-904. doi: 10.1093/sysbio/syy032.
3
Phylogenetic MCMC algorithms are misleading on mixtures of trees.
Science. 2005 Sep 30;309(5744):2207-9. doi: 10.1126/science.1115493.
4
Postprocessing of genealogical trees.
Genetics. 2007 Sep;177(1):347-58. doi: 10.1534/genetics.107.071910. Epub 2007 Jun 11.
5
Bayesian coestimation of phylogeny and sequence alignment.
BMC Bioinformatics. 2005 Apr 1;6:83. doi: 10.1186/1471-2105-6-83.
6
BEST: Bayesian estimation of species trees under the coalescent model.
Bioinformatics. 2008 Nov 1;24(21):2542-3. doi: 10.1093/bioinformatics/btn484. Epub 2008 Sep 17.
7
Identifiability of parameters in MCMC Bayesian inference of phylogeny.
Syst Biol. 2002 Oct;51(5):754-60. doi: 10.1080/10635150290102429.
9
AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics.
Bioinformatics. 2008 Feb 15;24(4):581-3. doi: 10.1093/bioinformatics/btm388. Epub 2007 Aug 30.

引用本文的文献

1
Efficient Bayesian inference under the multispecies coalescent with migration.
Proc Natl Acad Sci U S A. 2023 Oct 31;120(44):e2310708120. doi: 10.1073/pnas.2310708120. Epub 2023 Oct 23.
3
The Pop-Gen Pipeline Platform: A Software Platform for Population Genomic Analyses.
Mol Biol Evol. 2021 Jul 29;38(8):3478-3485. doi: 10.1093/molbev/msab113.
4
Recent advances in Bayesian inference of isolation-with-migration models.
Genomics Inform. 2019 Dec;17(4):e37. doi: 10.5808/GI.2019.17.4.e37. Epub 2019 Nov 13.
5
Phylogeny Estimation by Integration over Isolation with Migration Models.
Mol Biol Evol. 2018 Nov 1;35(11):2805-2818. doi: 10.1093/molbev/msy162.

本文引用的文献

1
A genomic perspective on hybridization and speciation.
Mol Ecol. 2016 Jun;25(11):2337-60. doi: 10.1111/mec.13557. Epub 2016 Mar 9.
2
Methods and models for unravelling human evolutionary history.
Nat Rev Genet. 2015 Dec;16(12):727-40. doi: 10.1038/nrg4005. Epub 2015 Nov 10.
3
On the occurrence of false positives in tests of migration under an isolation-with-migration model.
Mol Ecol. 2015 Oct;24(20):5078-83. doi: 10.1111/mec.13381. Epub 2015 Oct 12.
4
Tiger Swallowtail Genome Reveals Mechanisms for Speciation and Caterpillar Chemical Defense.
Cell Rep. 2015 Feb 17;10(6):910-919. doi: 10.1016/j.celrep.2015.01.026. Epub 2015 Feb 13.
5
Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow.
Mol Ecol. 2014 Jul;23(13):3133-57. doi: 10.1111/mec.12796. Epub 2014 Jun 17.
6
Great ape genetic diversity and population history.
Nature. 2013 Jul 25;499(7459):471-5. doi: 10.1038/nature12228. Epub 2013 Jul 3.
7
Efficient computation in the IM model.
J Math Biol. 2014 May;68(6):1423-51. doi: 10.1007/s00285-013-0671-9. Epub 2013 Apr 16.
8
Population genetics and objectivity in species diagnosis.
Evolution. 2012 May;66(5):1413-29. doi: 10.1111/j.1558-5646.2011.01542.x. Epub 2012 Jan 23.
9
10
Bayesian inference of ancient human demography from individual genome sequences.
Nat Genet. 2011 Sep 18;43(10):1031-4. doi: 10.1038/ng.937.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验