Suppr超能文献

切应力对减少防污聚合物细菌黏附的影响。

Effect of shear stress on the reduction of bacterial adhesion to antifouling polymers.

机构信息

Department of Chemistry and Physics of Surfaces and Biointerfaces, Institute of Macromolecular Chemistry, ASCR, v.v.i., Heyrovsky Sq. 2, 16206 Prague, Czechia. Both authors equally contributed to this work.

出版信息

Bioinspir Biomim. 2018 Sep 14;13(6):065001. doi: 10.1088/1748-3190/aadcc2.

Abstract

In this work, two antifouling polymer brushes were tested at different shear stress conditions to evaluate their performance in reducing the initial adhesion of Escherichia coli. Assays were performed using a parallel plate flow chamber and a shear stress range between 0.005 and 0.056 Pa. These shear stress values are found in different locations in the human body where biomedical devices are placed. The poly(MeOEGMA) and poly(HPMA) brushes were characterized and it was shown that they can reduce initial adhesion up to 90% when compared to glass. Importantly, the performance of these surfaces was not affected by the shear stress, which is an indication that they do not collapse under this shear stress range. The brushes displayed a similar behavior despite the differences in their chemical composition and surface energy. Both surfaces have shown ultra-low adsorption of macromolecules from the medium when tested with relevant biological fluids (urine and serum). This indicates that these surfaces can potentially be used in biomedical devices to reduce initial bacterial colonization and eventually reduce biofilm formation on these devices.

摘要

在这项工作中,两种抗污聚合物刷在不同的剪切应力条件下进行了测试,以评估它们在减少大肠杆菌初始黏附方面的性能。使用平行板流动室和 0.005 至 0.056 Pa 的剪切应力范围进行了测定。这些剪切应力值存在于人体中放置生物医学设备的不同位置。对聚(MeOEGMA)和聚(HPMA)刷进行了表征,结果表明与玻璃相比,它们可以将初始黏附降低多达 90%。重要的是,这些表面的性能不受剪切应力的影响,这表明它们在这个剪切应力范围内不会崩溃。尽管这两种表面的化学组成和表面能存在差异,但它们表现出相似的行为。在使用相关生物流体(尿液和血清)进行测试时,两种表面的大分子从中都表现出超低的吸附。这表明这些表面有可能在生物医学设备中使用,以减少初始细菌定植,并最终减少这些设备上生物膜的形成。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验