Graduate Program in Neuroscience, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States of America; Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ, United States of America.
Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ, United States of America.
Mol Cell Neurosci. 2018 Oct;92:149-163. doi: 10.1016/j.mcn.2018.08.004. Epub 2018 Aug 23.
Tuberous Sclerosis Complex (TSC) is a disease caused by autosomal dominant mutations in the TSC1 or TSC2 genes, and is characterized by tumor susceptibility, brain lesions, seizures and behavioral impairments. The TSC1 and TSC2 genes encode proteins forming a complex (TSC), which is a major regulator and suppressor of mammalian target of rapamycin complex 1 (mTORC1), a signaling complex that promotes cell growth and proliferation. TSC1/2 loss of heterozygosity (LOH) and the subsequent complete loss of TSC regulatory activity in null cells causes mTORC1 dysregulation and TSC-associated brain lesions or other tissue tumors. However, it is not clear whether TSC1/2 heterozygous brain cells are abnormal and contribute to TSC neuropathology. To investigate this issue, we generated induced pluripotent stem cells (iPSCs) from TSC patients and unaffected controls, and utilized these to obtain neural progenitor cells (NPCs) and differentiated neurons in vitro. These patient-derived TSC2 heterozygous NPCs were delayed in their ability to differentiate into neurons. Patient-derived progenitor cells also exhibited a modest activation of mTORC1 signaling downstream of TSC, and a marked attenuation of upstream PI3K/AKT signaling. We further show that pharmacologic PI3K or AKT inhibition, but not mTORC1 inhibition, causes a neuronal differentiation delay, mimicking the patient phenotype. Together these data suggest that heterozygous TSC2 mutations disrupt neuronal development, potentially contributing to the disease neuropathology, and that this defect may result from dysregulated PI3K/AKT signaling in neural progenitor cells.
结节性硬化症(TSC)是由 TSC1 或 TSC2 基因的常染色体显性突变引起的疾病,其特征是肿瘤易感性、脑损伤、癫痫发作和行为障碍。TSC1 和 TSC2 基因编码形成复合物(TSC)的蛋白质,该复合物是哺乳动物雷帕霉素靶蛋白复合物 1(mTORC1)的主要调节物和抑制剂,mTORC1 是一种促进细胞生长和增殖的信号复合物。TSC1/2 杂合性丢失(LOH)和随后的 null 细胞中 TSC 调节活性的完全丧失导致 mTORC1 失调和 TSC 相关的脑损伤或其他组织肿瘤。然而,尚不清楚 TSC1/2 杂合脑细胞是否异常并导致 TSC 神经病理学。为了研究这个问题,我们从 TSC 患者和未受影响的对照中生成了诱导多能干细胞(iPSC),并利用这些细胞获得了体外神经祖细胞(NPC)和分化神经元。这些源自 TSC 患者的 TSC2 杂合 NPC 分化为神经元的能力延迟。源自患者的祖细胞也表现出 TSC 下游 mTORC1 信号的适度激活,以及上游 PI3K/AKT 信号的明显衰减。我们进一步表明,药理 PI3K 或 AKT 抑制,但不是 mTORC1 抑制,导致神经元分化延迟,模拟患者表型。这些数据表明,杂合 TSC2 突变破坏了神经元发育,可能导致疾病的神经病理学,并且这种缺陷可能是由于神经祖细胞中 PI3K/AKT 信号的失调引起的。