Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
Med Image Anal. 2018 Oct;49:128-140. doi: 10.1016/j.media.2018.08.003. Epub 2018 Aug 13.
Four-dimensional (4D) flow magnetic resonance imaging (4D Flow MRI) enables acquisition of time-resolved three-directional velocity data in the entire heart and all major thoracic vessels. The segmentation of these tissues is typically performed using semi-automatic methods. Some of which primarily rely on the velocity data and result in a segmentation of the vessels only during the systolic phases. Other methods, mostly applied on the heart, rely on separately acquired balanced Steady State Free Precession (b-SSFP) MR images, after which the segmentations are superimposed on the 4D Flow MRI. While b-SSFP images typically cover the whole cardiac cycle and have good contrast, they suffer from a number of problems, such as large slice thickness, limited coverage of the cardiac anatomy, and being prone to displacement errors caused by respiratory motion. To address these limitations we propose a multi-atlas segmentation method, which relies only on 4D Flow MRI data, to automatically generate four-dimensional segmentations that include the entire thoracic cardiovascular system present in these datasets. The approach was evaluated on 4D Flow MR datasets from a cohort of 27 healthy volunteers and 83 patients with mildly impaired systolic left-ventricular function. Comparison of manual and automatic segmentations of the cardiac chambers at end-systolic and end-diastolic timeframes showed agreements comparable to those previously reported for automatic segmentation methods of b-SSFP MR images. Furthermore, automatic segmentation of the entire thoracic cardiovascular system improves visualization of 4D Flow MRI and facilitates computation of hemodynamic parameters.
四维(4D)流动磁共振成像(4D Flow MRI)能够在整个心脏和所有主要的胸腔血管中采集时变三维速度数据。这些组织的分割通常使用半自动方法完成。其中一些主要依赖于速度数据,仅在收缩期分割血管。其他方法,主要应用于心脏,依赖于分别采集的平衡稳态自由进动(b-SSFP)MR 图像,然后将分割叠加到 4D Flow MRI 上。虽然 b-SSFP 图像通常覆盖整个心动周期,且对比度良好,但它们存在许多问题,如较大的切片厚度、心脏解剖结构的有限覆盖范围以及易受呼吸运动引起的位移误差的影响。为了解决这些限制,我们提出了一种仅依赖于 4D Flow MRI 数据的多图谱分割方法,以自动生成包括这些数据集中心胸心血管系统的四维分割。该方法在 27 名健康志愿者和 83 名收缩性左心室功能轻度受损的患者的 4D Flow MR 数据集上进行了评估。在收缩末期和舒张末期时间帧对心脏腔室的手动和自动分割进行比较,结果显示与以前报告的 b-SSFP MR 图像自动分割方法的一致性相当。此外,整个胸腔心血管系统的自动分割可以改善 4D Flow MRI 的可视化,并有助于计算血流动力学参数。