Suppr超能文献

心脏肌肉收缩时原肌球蛋白动力学受到多势阱能量景观的控制。

Tropomyosin dynamics during cardiac muscle contraction as governed by a multi-well energy landscape.

机构信息

Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.

Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.

出版信息

Prog Biophys Mol Biol. 2019 Jul;144:102-115. doi: 10.1016/j.pbiomolbio.2018.07.015. Epub 2018 Aug 23.

Abstract

The dynamic oscillations of tropomyosin molecules in the azimuthal direction over the surface of the actin filament during thin filament activation are studied here from an energy landscape perspective. A mathematical model based on principles from nonlinear dynamics and chaos theory is derived to describe these dynamical motions. In particular, an energy potential with three wells is proposed to govern the tropomyosin oscillations between the observed regulatory positions observed during muscle contraction, namely the blocked "B", closed "C" and open "M" states. Based on the variations in both the frequency and amplitude of the environmental (surrounding the thin filament system) driving tractions, such as the electrostatic, hydrophobic, and Ca-dependent forces, the tropomyosin movements are shown to be complex; they can change from being simple harmonic oscillations to being fully chaotic. Three cases (periodic, period-2, and chaotic patterns) are presented to showcase the different possible dynamic responses of tropomyosin sliding over the actin filament. A probability density function is used as a statistical measure to calculate the average residence time spanned out by the tropomyosin molecule when visiting each (B, C, M) equilibrium state. The results were found to depend strongly on the energy landscape profile and its featured barriers, which normally govern the transitions between the B-C-M states during striated muscle activation.

摘要

从能量景观的角度研究了薄丝激活过程中肌动蛋白丝表面上原肌球蛋白分子在方位角方向上的动态振动。本文提出了一个基于非线性动力学和混沌理论原理的数学模型来描述这些动力学运动。特别是,提出了一个具有三个势阱的能量势来控制肌球蛋白在观察到的肌肉收缩期间的调节位置之间的振荡,即被阻塞的“B”、关闭的“C”和开放的“M”状态。基于环境(围绕薄丝系统)驱动力的频率和幅度的变化,如静电、疏水性和 Ca 依赖性力,肌球蛋白的运动表现出复杂性;它们可以从简单的谐波振动变为完全混沌。本文展示了三种情况(周期、双周期和混沌模式),以展示肌球蛋白在肌动蛋白丝上滑动的不同可能的动力学响应。概率密度函数用作统计量来计算肌球蛋白分子在访问每个(B、C、M)平衡态时所跨越的平均停留时间。结果发现,这些结果强烈依赖于能量景观的轮廓及其特征势垒,这些势垒通常控制横纹肌激活期间 B-C-M 状态之间的转换。

相似文献

8
Regulation of contraction in striated muscle.横纹肌收缩的调节。
Physiol Rev. 2000 Apr;80(2):853-924. doi: 10.1152/physrev.2000.80.2.853.
10
Cardiac contractility: how calcium activates the myofilaments.心脏收缩力:钙如何激活肌丝。
Naturwissenschaften. 1998 Dec;85(12):575-82. doi: 10.1007/s001140050554.

本文引用的文献

2
Structure of the F-actin-tropomyosin complex.F-肌动蛋白-原肌球蛋白复合物的结构。
Nature. 2015 Mar 5;519(7541):114-7. doi: 10.1038/nature14033. Epub 2014 Dec 1.
3
Energy landscapes reveal the myopathic effects of tropomyosin mutations.能量景观揭示了原肌球蛋白突变的肌病效应。
Arch Biochem Biophys. 2014 Dec 15;564:89-99. doi: 10.1016/j.abb.2014.09.007. Epub 2014 Sep 18.
4
Tropomyosin dynamics.原肌球蛋白动力学
J Muscle Res Cell Motil. 2014 Aug;35(3-4):203-10. doi: 10.1007/s10974-014-9377-x. Epub 2014 Feb 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验