Suppr超能文献

利用分子动力学模拟探测原肌球蛋白的柔韧性及其与丝状肌动蛋白的结合。

Probing the flexibility of tropomyosin and its binding to filamentous actin using molecular dynamics simulations.

机构信息

Department of Physics, University at Buffalo, Buffalo, New York.

出版信息

Biophys J. 2013 Oct 15;105(8):1882-92. doi: 10.1016/j.bpj.2013.09.003.

Abstract

Tropomyosin (Tm) is a coiled-coil protein that binds to filamentous actin (F-actin) and regulates its interactions with actin-binding proteins like myosin by moving between three positions on F-actin (the blocked, closed, and open positions). To elucidate the molecular details of Tm flexibility in relation to its binding to F-actin, we conducted extensive molecular dynamics simulations for both Tm alone and Tm-F-actin complex in the presence of explicit solvent (total simulation time >400 ns). Based on the simulations, we systematically analyzed the local flexibility of the Tm coiled coil using multiple parameters. We found a good correlation between the regions with high local flexibility and a number of destabilizing regions in Tm, including six clusters of core alanines. Despite the stabilization by F-actin binding, the distribution of local flexibility in Tm is largely unchanged in the absence and presence of F-actin. Our simulations showed variable fluctuations of individual Tm periods from the closed position toward the open position. In addition, we performed Tm-F-actin binding calculations based on the simulation trajectories, which support the importance of Tm flexibility to Tm-F-actin binding. We identified key residues of Tm involved in its dynamic interactions with F-actin, many of which have been found in recent mutational studies to be functionally important, and the rest of which will make promising targets for future mutational experiments.

摘要

原肌球蛋白(Tm)是一种卷曲螺旋蛋白,可与丝状肌动蛋白(F-actin)结合,并通过在 F-actin 上的三个位置之间移动(阻塞、关闭和打开位置)来调节其与肌球蛋白等肌动蛋白结合蛋白的相互作用。为了阐明 Tm 与 F-actin 结合的灵活性的分子细节,我们对 Tm 单体和 Tm-F-actin 复合物进行了广泛的分子动力学模拟,同时存在明确的溶剂(总模拟时间>400 ns)。基于模拟,我们使用多个参数系统地分析了 Tm 卷曲螺旋的局部灵活性。我们发现 Tm 中局部灵活性高的区域与大量不稳定区域之间存在良好的相关性,包括六个核心丙氨酸簇。尽管 F-actin 结合稳定了 Tm,但 F-actin 的存在与否对 Tm 局部灵活性的分布影响不大。我们的模拟显示,单个 Tm 周期从关闭位置向打开位置的波动情况各不相同。此外,我们还根据模拟轨迹进行了 Tm-F-actin 结合计算,这支持了 Tm 灵活性对 Tm-F-actin 结合的重要性。我们确定了 Tm 与 F-actin 动态相互作用涉及的关键残基,其中许多残基在最近的突变研究中被发现具有重要的功能,其余残基将成为未来突变实验的有前途的目标。

相似文献

2
Molecular dynamics simulation of tropomyosin bound to actins/myosin in the closed and open states.
Proteins. 2019 Oct;87(10):805-814. doi: 10.1002/prot.25707. Epub 2019 May 23.
3
Investigating the effects of tropomyosin mutations on its flexibility and interactions with filamentous actin using molecular dynamics simulation.
J Muscle Res Cell Motil. 2016 Oct;37(4-5):131-147. doi: 10.1007/s10974-016-9447-3. Epub 2016 Jul 4.
4
What makes tropomyosin an actin binding protein? A perspective.
J Struct Biol. 2010 May;170(2):319-24. doi: 10.1016/j.jsb.2009.12.013. Epub 2009 Dec 29.
6
The structural dynamics of α-tropomyosin on F-actin shape the overlap complex between adjacent tropomyosin molecules.
Arch Biochem Biophys. 2014 Jun 15;552-553:68-73. doi: 10.1016/j.abb.2013.09.011. Epub 2013 Sep 23.
8
Spontaneous transitions of actin-bound tropomyosin toward blocked and closed states.
J Gen Physiol. 2019 Jan 7;151(1):4-8. doi: 10.1085/jgp.201812188. Epub 2018 Nov 15.
9
The propensity for tropomyosin twisting in the presence and absence of F-actin.
Arch Biochem Biophys. 2016 Nov 1;609:51-58. doi: 10.1016/j.abb.2016.09.008. Epub 2016 Sep 20.
10
Periodicities designed in the tropomyosin sequence and structure define its functions.
Bioarchitecture. 2013 May-Jun;3(3):51-6. doi: 10.4161/bioa.25616. Epub 2013 Jul 8.

引用本文的文献

1
The hypertrophic cardiomyopathy-associated A331P actin variant enhances basal contractile activity and elicits resting muscle dysfunction.
iScience. 2025 Jan 16;28(2):111816. doi: 10.1016/j.isci.2025.111816. eCollection 2025 Feb 21.
2
Molecular Dynamics Assessment of Mechanical Properties of the Thin Filaments in Cardiac Muscle.
Int J Mol Sci. 2023 Mar 1;24(5):4792. doi: 10.3390/ijms24054792.
3
Divergent Plasmodium actin residues are essential for filament localization, mosquito salivary gland invasion and malaria transmission.
PLoS Pathog. 2022 Aug 23;18(8):e1010779. doi: 10.1371/journal.ppat.1010779. eCollection 2022 Aug.
4
Impact of A134 and E218 Amino Acid Residues of Tropomyosin on Its Flexibility and Function.
Int J Mol Sci. 2020 Nov 18;21(22):8720. doi: 10.3390/ijms21228720.
5
Structural insights into the tropomodulin assembly at the pointed ends of actin filaments.
Protein Sci. 2021 Feb;30(2):423-437. doi: 10.1002/pro.4000. Epub 2020 Dec 2.
6
Protein-Protein Docking Reveals Dynamic Interactions of Tropomyosin on Actin Filaments.
Biophys J. 2020 Jul 7;119(1):75-86. doi: 10.1016/j.bpj.2020.05.017. Epub 2020 May 22.
7
Cardiomyopathy Mutation Alters End-to-End Junction of Tropomyosin and Reduces Calcium Sensitivity.
Biophys J. 2020 Jan 21;118(2):303-312. doi: 10.1016/j.bpj.2019.11.3396. Epub 2019 Dec 14.
8
A Stochastic Multiscale Model of Cardiac Thin Filament Activation Using Brownian-Langevin Dynamics.
Biophys J. 2019 Dec 17;117(12):2255-2272. doi: 10.1016/j.bpj.2019.08.003. Epub 2019 Aug 9.
9
Functional outcomes of structural peculiarities of striated muscle tropomyosin.
J Muscle Res Cell Motil. 2020 Mar;41(1):55-70. doi: 10.1007/s10974-019-09552-8. Epub 2019 Sep 18.
10
The Effect of Tropomyosin Mutations on Actin-Tropomyosin Binding: In Search of Lost Time.
Biophys J. 2019 Jun 18;116(12):2275-2284. doi: 10.1016/j.bpj.2019.05.009. Epub 2019 May 13.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
3
A periodic pattern of evolutionarily conserved basic and acidic residues constitutes the binding interface of actin-tropomyosin.
J Biol Chem. 2013 Apr 5;288(14):9602-9609. doi: 10.1074/jbc.M113.451161. Epub 2013 Feb 18.
5
Coarse-grained and all-atom modeling of structural states and transitions in hemoglobin.
Proteins. 2013 Feb;81(2):240-52. doi: 10.1002/prot.24180. Epub 2012 Oct 26.
6
Routine Access to Millisecond Time Scale Events with Accelerated Molecular Dynamics.
J Chem Theory Comput. 2012 Sep 11;8(9):2997-3002. doi: 10.1021/ct300284c. Epub 2012 Jul 27.
7
Structure of the rigor actin-tropomyosin-myosin complex.
Cell. 2012 Jul 20;150(2):327-38. doi: 10.1016/j.cell.2012.05.037.
8
The flexibility of two tropomyosin mutants, D175N and E180G, that cause hypertrophic cardiomyopathy.
Biochem Biophys Res Commun. 2012 Aug 3;424(3):493-6. doi: 10.1016/j.bbrc.2012.06.141. Epub 2012 Jul 9.
9
Structural implications of conserved aspartate residues located in tropomyosin's coiled-coil core.
Bioarchitecture. 2011 Sep 1;1(5):250-255. doi: 10.4161/bioa.18117.
10
All-atom structural investigation of kinesin-microtubule complex constrained by high-quality cryo-electron-microscopy maps.
Biochemistry. 2012 Jun 26;51(25):5022-32. doi: 10.1021/bi300362a. Epub 2012 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验