Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA.
United States Department of Veterans Affairs, VA Maryland Health Care System, 10 North Greene Street, Baltimore, MD, 21201, USA.
Small. 2018 Sep;14(38):e1802202. doi: 10.1002/smll.201802202. Epub 2018 Aug 26.
Vaccines and immunotherapies that elicit specific types of immune responses offer transformative potential to tackle disease. The mechanisms governing the processing of immune signals-events that determine the type of response generated-are incredibly complex. Understanding these processes would inform more rational vaccine design by linking carrier properties, processing mechanisms, and relevant timescales to specific impacts on immune response. This goal is pursued using nanostructured materials-termed immune polyelectrolyte multilayers-built entirely from antigens and stimulatory toll-like receptors agonists (TLRas). This simplicity allows isolation and quantification of the rates and mechanisms of intracellular signal processing, and the link to activation of distinct immune pathways. Each vaccine component is internalized in a colocalized manner through energy-dependent caveolae-mediated endocytosis. This process results in trafficking through endosome/lysosome pathways and stimulation of TLRs expressed on endosomes/lysosomes. The maximum rates for these events occur within 4 h, but are detectable in minutes, ultimately driving downstream proimmune functions. Interestingly, these uptake, processing, and activation kinetics are significantly faster for TLRas in particulate form compared with free TLRa. Our findings provide insight into specific mechanisms by which particulate vaccines enhance initiation of immune response, and highlight quantitative strategies to assess other carrier technologies.
疫苗和免疫疗法可以引发特定类型的免疫反应,为治疗疾病提供了变革性的潜力。控制免疫信号处理的机制——决定产生的反应类型的事件——极其复杂。通过将载体特性、处理机制和相关时间尺度与对免疫反应的特定影响联系起来,了解这些过程将为更合理的疫苗设计提供信息。这一目标是通过使用完全由抗原和刺激 Toll 样受体激动剂 (TLRas) 组成的纳米结构材料——免疫聚电解质多层来实现的。这种简单性允许隔离和量化细胞内信号处理的速率和机制,并将其与不同免疫途径的激活联系起来。每个疫苗成分都通过能量依赖性小窝蛋白介导的内吞作用以共定位的方式被内化。这个过程导致通过内体/溶酶体途径运输,并刺激内体/溶酶体上表达的 TLR。这些事件的最大速率在 4 小时内发生,但在几分钟内即可检测到,最终驱动下游的促免疫功能。有趣的是,与游离 TLRa 相比,颗粒状 TLRas 的摄取、处理和激活动力学要快得多。我们的发现提供了对颗粒疫苗如何增强免疫反应起始的特定机制的深入了解,并强调了评估其他载体技术的定量策略。