Suppr超能文献

利用生物材料改进疫苗和免疫疗法设计。

Improving Vaccine and Immunotherapy Design Using Biomaterials.

机构信息

Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, College Park, MD 20742, USA.

Department of Surgery, University of Maryland School of Medicine, 29 South Greene Street, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, 800 West Baltimore Street, Baltimore, MD 21201, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, 22 South Greene Street, Baltimore, MD 21201, USA.

出版信息

Trends Immunol. 2018 Feb;39(2):135-150. doi: 10.1016/j.it.2017.10.002. Epub 2017 Dec 14.

Abstract

Polymers, lipids, scaffolds, microneedles, and other biomaterials are rapidly emerging as technologies to improve the efficacy of vaccines against infectious disease and immunotherapies for cancer, autoimmunity, and transplantation. New studies are also providing insight into the interactions between these materials and the immune system. This insight can be exploited for more efficient design of vaccines and immunotherapies. Here, we describe recent advances made possible through the unique features of biomaterials, as well as the important questions for further study.

摘要

聚合物、脂质、支架、微针和其他生物材料作为技术正在迅速涌现,以提高针对传染病的疫苗和癌症、自身免疫和移植的免疫疗法的疗效。新的研究也为这些材料与免疫系统之间的相互作用提供了深入了解。这种见解可以被利用来更有效地设计疫苗和免疫疗法。在这里,我们描述了通过生物材料的独特特性实现的最新进展,以及进一步研究的重要问题。

相似文献

1
Improving Vaccine and Immunotherapy Design Using Biomaterials.
Trends Immunol. 2018 Feb;39(2):135-150. doi: 10.1016/j.it.2017.10.002. Epub 2017 Dec 14.
2
Protein and Peptide Biomaterials for Engineered Subunit Vaccines and Immunotherapeutic Applications.
Annu Rev Chem Biomol Eng. 2019 Jun 7;10:337-359. doi: 10.1146/annurev-chembioeng-060718-030347.
3
Introduction to checkpoint inhibitors and cancer immunotherapy.
Immunol Rev. 2017 Mar;276(1):5-8. doi: 10.1111/imr.12531.
4
[Immunology. Realizable discoveries].
Dtsch Med Wochenschr. 1999 Dec 23;124(51-52):1570-2.
5
Advances in immunotherapy delivery from implantable and injectable biomaterials.
Acta Biomater. 2019 Apr 1;88:15-31. doi: 10.1016/j.actbio.2019.02.016. Epub 2019 Feb 13.
6
Myeloid-derived suppressor cells: Multi-talented immune suppressive cells that can be either helpful or harmful.
Cell Immunol. 2021 Jul;365:104374. doi: 10.1016/j.cellimm.2021.104374. Epub 2021 Apr 27.
7
Clinical significance of IgG Fc receptors and Fc gamma R-directed immunotherapies.
Immunol Today. 1997 Mar;18(3):127-35. doi: 10.1016/s0167-5699(97)01007-4.
8
Engineering Immune Tolerance with Biomaterials.
Adv Healthc Mater. 2019 Feb;8(4):e1801419. doi: 10.1002/adhm.201801419. Epub 2019 Jan 3.
9
Editorial: Strategies for Modulating T Cell Responses in Autoimmunity and Infection.
Front Immunol. 2020 Feb 20;11:208. doi: 10.3389/fimmu.2020.00208. eCollection 2020.
10
Revisiting the Functional Impact of NK Cells.
Trends Immunol. 2018 Jun;39(6):460-472. doi: 10.1016/j.it.2018.01.011. Epub 2018 Feb 26.

引用本文的文献

1
Protein nanocages: A new frontier in mucosal vaccine delivery and immune activation.
Hum Vaccin Immunother. 2025 Dec;21(1):2492906. doi: 10.1080/21645515.2025.2492906. Epub 2025 May 12.
2
Nanotechnology-based strategies for vaccine development: accelerating innovation and delivery.
Biomater Transl. 2025 Mar 25;6(1):55-72. doi: 10.12336/biomatertransl.2025.01.005. eCollection 2025.
3
Incorporation of heat-labile enterotoxin B subunit into rabies virus particles enhances its immunogenicity in mice and dogs.
Biosaf Health. 2023 May 9;5(5):308-319. doi: 10.1016/j.bsheal.2023.05.005. eCollection 2023 Oct.
5
Tailoring biomaterials for vaccine delivery.
J Nanobiotechnology. 2024 Aug 12;22(1):480. doi: 10.1186/s12951-024-02758-0.
6
Cancer immunotherapy and its facilitation by nanomedicine.
Biomark Res. 2024 Aug 3;12(1):77. doi: 10.1186/s40364-024-00625-6.
7
Targeted Drug Nanodelivery and Immunotherapy for Combating Tumor Resistance.
Comb Chem High Throughput Screen. 2025;28(4):561-581. doi: 10.2174/0113862073296206240416060154.
8
Advancing immunotherapy using biomaterials to control tissue, cellular, and molecular level immune signaling in skin.
Adv Drug Deliv Rev. 2024 Jun;209:115315. doi: 10.1016/j.addr.2024.115315. Epub 2024 Apr 25.
9
USE OF ARTIFICIAL CELLS AS DRUG CARRIERS.
Mater Chem Front. 2021 Sep 21;5(18):6672-6692. doi: 10.1039/d1qm00717c. Epub 2021 Jul 16.
10
The Application of Biomaterials for the Vaccine, Treatment, and Detection of SARS-CoV-2.
ACS Omega. 2024 Jan 26;9(5):5175-5192. doi: 10.1021/acsomega.3c08326. eCollection 2024 Feb 6.

本文引用的文献

1
Engineering Immunological Tolerance Using Quantum Dots to Tune the Density of Self-Antigen Display.
Adv Funct Mater. 2017 Jun 13;27(22). doi: 10.1002/adfm.201700290. Epub 2017 Apr 3.
2
Key players in the immune response to biomaterial scaffolds for regenerative medicine.
Adv Drug Deliv Rev. 2017 May 15;114:184-192. doi: 10.1016/j.addr.2017.07.006. Epub 2017 Jul 13.
4
Multivalent bi-specific nanobioconjugate engager for targeted cancer immunotherapy.
Nat Nanotechnol. 2017 Aug;12(8):763-769. doi: 10.1038/nnano.2017.69. Epub 2017 May 1.
5
A STING-activating nanovaccine for cancer immunotherapy.
Nat Nanotechnol. 2017 Jul;12(7):648-654. doi: 10.1038/nnano.2017.52. Epub 2017 Apr 24.
6
Peptide-MHC-based nanomedicines for autoimmunity function as T-cell receptor microclustering devices.
Nat Nanotechnol. 2017 Jul;12(7):701-710. doi: 10.1038/nnano.2017.56. Epub 2017 Apr 24.
7
Biopolymers codelivering engineered T cells and STING agonists can eliminate heterogeneous tumors.
J Clin Invest. 2017 Jun 1;127(6):2176-2191. doi: 10.1172/JCI87624. Epub 2017 Apr 24.
8
In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers.
Nat Nanotechnol. 2017 Aug;12(8):813-820. doi: 10.1038/nnano.2017.57. Epub 2017 Apr 17.
9
In vivo reprogramming of immune cells: Technologies for induction of antigen-specific tolerance.
Adv Drug Deliv Rev. 2017 May 15;114:240-255. doi: 10.1016/j.addr.2017.04.005. Epub 2017 Apr 14.
10
Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes.
Nat Nanotechnol. 2017 Jul;12(6):589-594. doi: 10.1038/nnano.2017.47. Epub 2017 Apr 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验