Bookstaver Michelle L, Zeng Qin, Oakes Robert S, Kapnick Senta M, Saxena Vikas, Edwards Camilla, Venkataraman Nishedhya, Black Sheneil K, Zeng Xiangbin, Froimchuk Eugene, Gebhardt Thomas, Bromberg Jonathan S, Jewell Christopher M
Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA.
United States Department of Veterans Affairs, VA Maryland Health Care System, 10 North Greene Street, Baltimore, MD, 21201, USA.
Adv Sci (Weinh). 2022 Nov 14;10(1):e2202393. doi: 10.1002/advs.202202393.
Recent clinical studies show activating multiple innate immune pathways drives robust responses in infection and cancer. Biomaterials offer useful features to deliver multiple cargos, but add translational complexity and intrinsic immune signatures that complicate rational design. Here a modular adjuvant platform is created using self-assembly to build nanostructured capsules comprised entirely of antigens and multiple classes of toll-like receptor agonists (TLRas). These assemblies sequester TLR to endolysosomes, allowing programmable control over the relative signaling levels transduced through these receptors. Strikingly, this combinatorial control of innate signaling can generate divergent antigen-specific responses against a particular antigen. These assemblies drive reorganization of lymph node stroma to a pro-immune microenvironment, expanding antigen-specific T cells. Excitingly, assemblies built from antigen and multiple TLRas enhance T cell function and antitumor efficacy compared to ad-mixed formulations or capsules with a single TLRa. Finally, capsules built from a clinically relevant human melanoma antigen and up to three TLRa classes enable simultaneous control of signal transduction across each pathway. This creates a facile adjuvant design platform to tailor signaling for vaccines and immunotherapies without using carrier components. The modular nature supports precision juxtaposition of antigen with agonists relevant for several innate receptor families, such as toll, STING, NOD, and RIG.
近期临床研究表明,激活多种固有免疫途径可在感染和癌症中引发强烈反应。生物材料具有递送多种货物的有用特性,但增加了转化复杂性和内在免疫特征,使合理设计变得复杂。在此,利用自组装创建了一个模块化佐剂平台,以构建完全由抗原和多种Toll样受体激动剂(TLR)组成的纳米结构胶囊。这些组装体将TLR隔离到内溶酶体中,从而可对通过这些受体转导的相对信号水平进行可编程控制。引人注目的是,这种对固有信号的组合控制可针对特定抗原产生不同的抗原特异性反应。这些组装体促使淋巴结基质重组为促免疫微环境,从而扩增抗原特异性T细胞。令人兴奋的是,与混合制剂或含有单一TLR的胶囊相比,由抗原和多种TLR构建的组装体可增强T细胞功能和抗肿瘤疗效。最后,由临床相关的人类黑色素瘤抗原和多达三类TLR构建的胶囊能够同时控制每条途径的信号转导。这创建了一个简便的佐剂设计平台,可在不使用载体成分的情况下为疫苗和免疫疗法定制信号传导。这种模块化性质支持将抗原与与几种固有受体家族(如Toll、STING、NOD和RIG)相关的激动剂进行精确并列。