Suppr超能文献

基于超像素分割的腿部机器人具有清晰边界信息的综合分类。

Superpixel Segmentation Based Synthetic Classifications with Clear Boundary Information for a Legged Robot.

机构信息

Key Laboratory of Road Construction Technology and Equipment of MOE, Chang'an University, Xi'an 710064, China.

State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310028, China.

出版信息

Sensors (Basel). 2018 Aug 25;18(9):2808. doi: 10.3390/s18092808.

Abstract

In view of terrain classification of the autonomous multi-legged walking robots, two synthetic classification methods for terrain classification, Simple Linear Iterative Clustering based Support Vector Machine (SLIC-SVM) and Simple Linear Iterative Clustering based SegNet (SLIC-SegNet), are proposed. SLIC-SVM is proposed to solve the problem that the SVM can only output a single terrain label and fails to identify the mixed terrain. The SLIC-SegNet single-input multi-output terrain classification model is derived to improve the applicability of the terrain classifier. Since terrain classification results of high quality for legged robot use are hard to gain, the SLIC-SegNet obtains the satisfied information without too much effort. A series of experiments on regular terrain, irregular terrain and mixed terrain were conducted to present that both superpixel segmentation based synthetic classification methods can supply reliable mixed terrain classification result with clear boundary information and will put the terrain depending gait selection and path planning of the multi-legged robots into practice.

摘要

针对自主多足步行机器人的地形分类问题,提出了两种基于简单线性迭代聚类的地形分类综合方法,即基于支持向量机的简单线性迭代聚类(SLIC-SVM)和基于 SegNet 的简单线性迭代聚类(SLIC-SegNet)。SLIC-SVM 用于解决 SVM 只能输出单一地形标签,无法识别混合地形的问题。SLIC-SegNet 单输入多输出地形分类模型的推导提高了地形分类器的适用性。由于难以获得高质量的足式机器人使用的地形分类结果,SLIC-SegNet 无需太多努力就能获得满意的信息。在规则地形、不规则地形和混合地形上进行了一系列实验,结果表明,基于超像素分割的综合分类方法都可以提供具有清晰边界信息的可靠混合地形分类结果,并将地形依赖的步态选择和多足机器人的路径规划付诸实践。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2a/6165028/2cbce819b342/sensors-18-02808-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验