Wang Yu, Qi Qi, Shen Xuanjing
College of Applied Technology, Jilin University, Changchun 130012, China.
College of Computer Science and Technology, Jilin University, Changchun 130012, China.
Brain Sci. 2020 Feb 20;10(2):116. doi: 10.3390/brainsci10020116.
Non-uniform gray distribution and blurred edges often result in bias during the superpixel segmentation of medical images of magnetic resonance imaging (MRI). To this end, we propose a novel superpixel segmentation algorithm by integrating texture features and improved simple linear iterative clustering (SLIC). First, a 3D histogram reconstruction model is used to reconstruct the input image, which is further enhanced by gamma transformation. Next, the local tri-directional pattern descriptor is used to extract texture features of the image; this is followed by an improved SLIC superpixel segmentation. Finally, a novel clustering-center updating rule is proposed, using pixels with gray difference with original clustering centers smaller than a predefined threshold. The experiments on the Whole Brain Atlas (WBA) image database showed that, compared to existing state-of-the-art methods, our superpixel segmentation algorithm generated significantly more uniform superpixels, and demonstrated the performance accuracy of the superpixel segmentation in both fuzzy boundaries and fuzzy regions.
磁共振成像(MRI)医学图像的超像素分割过程中,灰度分布不均匀和边缘模糊常常会导致偏差。为此,我们通过整合纹理特征和改进的简单线性迭代聚类(SLIC)算法,提出了一种新颖的超像素分割算法。首先,使用三维直方图重建模型对输入图像进行重建,并通过伽马变换进一步增强。接着,利用局部三方向模式描述符提取图像的纹理特征;随后进行改进的SLIC超像素分割。最后,提出一种新颖的聚类中心更新规则,即使用与原始聚类中心灰度差异小于预定义阈值的像素。在全脑图谱(WBA)图像数据库上的实验表明,与现有的最先进方法相比,我们的超像素分割算法生成的超像素更加均匀,并在模糊边界和模糊区域展示了超像素分割的性能准确性。