Suppr超能文献

丘脑控制视觉皮层觉醒状态的发育和表达。

Thalamus Controls Development and Expression of Arousal States in Visual Cortex.

机构信息

Department of Pharmacology and Physiology, and Institute for Neuroscience, George Washington University, Washington, DC 20037.

Department of Pharmacology and Physiology, and Institute for Neuroscience, George Washington University, Washington, DC 20037

出版信息

J Neurosci. 2018 Oct 10;38(41):8772-8786. doi: 10.1523/JNEUROSCI.1519-18.2018. Epub 2018 Aug 27.

Abstract

Two major checkpoints of development in cerebral cortex are the acquisition of continuous spontaneous activity and the modulation of this activity by behavioral state. Despite the critical importance of these functions, the circuit mechanisms of their development remain unknown. Here we use the rodent visual system as a model to test the hypothesis that the locus of circuit change responsible for the developmental acquisition of continuity and state dependence measured in sensory cortex is relay thalamus, rather than the local cortical circuitry or the interconnectivity of the two structures. We conducted simultaneous recordings in the dorsal lateral geniculate nucleus (dLGN) and primary visual cortex (VC) of awake, head-fixed male and female rats using linear multielectrode arrays throughout early development. We find that activity in dLGN becomes continuous and positively correlated with movement (a measure of state dependence) on P13, the same day as VC, and that these properties are not dependent on VC activity. By contrast, silencing dLGN after P13 causes activity in VC to become discontinuous and movement to suppress, rather than augment, cortical firing, effectively reversing development. Thalamic bursting, a core characteristic of non-aroused states, emerged later, on P16, suggesting these processes are developmentally independent. Together our results indicate that cellular or circuit changes in relay thalamus are critical drivers for the maturation of background activity, which occurs around term in humans. The developing brain acquires two crucial features, continuous spontaneous activity and its modulation by arousal state, around term in humans and before the onset of sensory experience in rodents. This developmental transition in cortical activity, as measured by electroencephalogram (EEG), is an important milestone for normal brain development and indicates a good prognosis for babies born preterm and/or suffering brain damage such as hypoxic-ischemic encephalopathy. By using the awake rodent visual system as a model, we identify changes occurring at the level of relay thalamus, the major input to cortex, as the critical driver of EEG maturation. These results could help understand the circuit basis of human EEG development to improve diagnosis and treatment of infants in vulnerable situations.

摘要

大脑皮层发育的两个主要检查点是获得连续的自发性活动和通过行为状态调节这种活动。尽管这些功能至关重要,但它们的发展电路机制仍然未知。在这里,我们使用啮齿动物视觉系统作为模型,来检验这样一个假设,即负责在感觉皮层中测量的连续性和状态依赖性的发育获得的回路变化的位置是中继丘脑,而不是局部皮质回路或这两个结构的互连性。我们在雄性和雌性清醒、头部固定的大鼠的背外侧膝状体核(dLGN)和初级视觉皮层(VC)中使用线性多电极阵列进行了同时记录,整个早期发育过程中都使用了这种方法。我们发现,dLGN 的活动在 P13 日变得连续且与运动(状态依赖性的一种衡量标准)呈正相关,这与 VC 的情况相同,并且这些特性不依赖于 VC 的活动。相比之下,在 P13 日之后沉默 dLGN 会导致 VC 中的活动变得不连续,运动抑制而不是增强皮质放电,有效地逆转了发育。丘脑爆发,一种非唤醒状态的核心特征,出现在 P16 日之后,表明这些过程在发育上是独立的。我们的结果表明,中继丘脑的细胞或回路变化是背景活动成熟的关键驱动因素,这种成熟发生在人类足月时。发育中的大脑在人类足月前后和啮齿动物感觉体验开始之前获得了两个关键特征,即连续的自发性活动及其对唤醒状态的调制。这种皮质活动的发育性转变,如脑电图(EEG)所测量的,是正常大脑发育的重要里程碑,并表明早产儿和/或患有缺氧缺血性脑病等脑损伤的婴儿预后良好。通过使用清醒的啮齿动物视觉系统作为模型,我们确定在中继丘脑(皮质的主要输入)水平上发生的变化是 EEG 成熟的关键驱动因素。这些结果可以帮助理解人类 EEG 发育的电路基础,以改善脆弱情况下婴儿的诊断和治疗。

相似文献

1
Thalamus Controls Development and Expression of Arousal States in Visual Cortex.丘脑控制视觉皮层觉醒状态的发育和表达。
J Neurosci. 2018 Oct 10;38(41):8772-8786. doi: 10.1523/JNEUROSCI.1519-18.2018. Epub 2018 Aug 27.
6
Development of Activity in the Mouse Visual Cortex.小鼠视觉皮层活动的发育
J Neurosci. 2016 Nov 30;36(48):12259-12275. doi: 10.1523/JNEUROSCI.1903-16.2016.

引用本文的文献

2
Noradrenaline Regulation of Brain-Body Communication.去甲肾上腺素对脑-体通讯的调节
Adv Exp Med Biol. 2025;1477:35-61. doi: 10.1007/978-3-031-89525-8_2.
8
Building thalamic neuronal networks during mouse development.在小鼠发育过程中构建丘脑神经元网络。
Front Neural Circuits. 2023 Feb 3;17:1098913. doi: 10.3389/fncir.2023.1098913. eCollection 2023.
9
Sleep, plasticity, and sensory neurodevelopment.睡眠、可塑性和感觉神经发育。
Neuron. 2022 Oct 19;110(20):3230-3242. doi: 10.1016/j.neuron.2022.08.005. Epub 2022 Sep 8.

本文引用的文献

1
Characteristics and clinical significance of delta brushes in the EEG of premature infants.早产儿脑电图中δ波的特征及临床意义
Clin Neurophysiol Pract. 2016 Dec 5;2:12-18. doi: 10.1016/j.cnp.2016.11.002. eCollection 2017.
2
Thalamocortical function in developing sensory circuits.发育中感觉回路的丘脑皮质功能。
Curr Opin Neurobiol. 2018 Oct;52:72-79. doi: 10.1016/j.conb.2018.04.019. Epub 2018 Apr 30.
7
Review of sleep-EEG in preterm and term neonates.早产和足月新生儿睡眠脑电图综述。
Early Hum Dev. 2017 Oct;113:87-103. doi: 10.1016/j.earlhumdev.2017.07.003. Epub 2017 Jul 12.
9
Neuronal activity patterns in the developing barrel cortex.发育期桶状皮层中的神经元活动模式。
Neuroscience. 2018 Jan 1;368:256-267. doi: 10.1016/j.neuroscience.2017.05.025. Epub 2017 May 19.
10
Visual Functions of the Thalamus.丘脑的视觉功能
Annu Rev Vis Sci. 2015 Nov;1:351-371. doi: 10.1146/annurev-vision-082114-035920.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验