Suppr超能文献

机器学习算法在预测抑郁症治疗效果中的应用:一项荟萃分析和系统评价。

Applications of machine learning algorithms to predict therapeutic outcomes in depression: A meta-analysis and systematic review.

机构信息

Institute of Medical Science, University of Toronto, Toronto, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada.

Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada.

出版信息

J Affect Disord. 2018 Dec 1;241:519-532. doi: 10.1016/j.jad.2018.08.073. Epub 2018 Aug 14.

Abstract

BACKGROUND

No previous study has comprehensively reviewed the application of machine learning algorithms in mood disorders populations. Herein, we qualitatively and quantitatively evaluate previous studies of machine learning-devised models that predict therapeutic outcomes in mood disorders populations.

METHODS

We searched Ovid MEDLINE/PubMed from inception to February 8, 2018 for relevant studies that included adults with bipolar or unipolar depression; assessed therapeutic outcomes with a pharmacological, neuromodulatory, or manual-based psychotherapeutic intervention for depression; applied a machine learning algorithm; and reported predictors of therapeutic response. A random-effects meta-analysis of proportions and meta-regression analyses were conducted.

RESULTS

We identified 639 records: 75 full-text publications were assessed for eligibility; 26 studies (n=17,499) and 20 studies (n=6325) were included in qualitative and quantitative review, respectively. Classification algorithms were able to predict therapeutic outcomes with an overall accuracy of 0.82 (95% confidence interval [CI] of [0.77, 0.87]). Pooled estimates of classification accuracy were significantly greater (p < 0.01) in models informed by multiple data types (e.g., composite of phenomenological patient features and neuroimaging or peripheral gene expression data; pooled proportion [95% CI] = 0.93[0.86, 0.97]) when compared to models with lower-dimension data types (pooledproportion=0.68[0.62,0.74]to0.85[0.81,0.88]).

LIMITATIONS

Most studies were retrospective; differences in machine learning algorithms and their implementation (e.g., cross-validation, hyperparameter tuning); cannot infer importance of individual variables fed into learning algorithm.

CONCLUSIONS

Machine learning algorithms provide a powerful conceptual and analytic framework capable of integrating multiple data types and sources. An integrative approach may more effectively model neurobiological components as functional modules of pathophysiology embedded within the complex, social dynamics that influence the phenomenology of mental disorders.

摘要

背景

此前尚无研究全面综述机器学习算法在心境障碍人群中的应用。在此,我们定性和定量评估了既往使用机器学习设计模型预测心境障碍人群治疗结局的研究。

方法

我们检索了 Ovid MEDLINE/PubMed 自建库至 2018 年 2 月 8 日的相关文献,纳入研究对象为成人双相或单相抑郁患者;采用药物、神经调节或基于手册的心理治疗干预评估抑郁的治疗结局;应用机器学习算法;并报告治疗反应的预测指标。我们进行了比例的随机效应荟萃分析和荟萃回归分析。

结果

我们共检索到 639 条记录:75 篇全文文献被评估是否符合纳入标准;26 项研究(n=17499)和 20 项研究(n=6325)分别纳入定性和定量综述。分类算法预测治疗结局的总准确率为 0.82(95%置信区间 [0.77, 0.87])。来自多组数据类型的模型(如现象学患者特征与神经影像学或外周基因表达数据的组合)分类准确性的汇总估计值显著更高(p<0.01),而来自低维数据类型的模型(汇总比例=0.68[0.62,0.74]至 0.85[0.81,0.88])则显著更低。

局限性

大多数研究为回顾性研究;机器学习算法及其实施方式(如交叉验证、超参数调整)存在差异;无法推断输入学习算法的个体变量的重要性。

结论

机器学习算法提供了一个强大的概念和分析框架,能够整合多种数据类型和来源。综合方法可能更有效地将神经生物学成分建模为嵌入影响精神障碍现象学的复杂社会动力学的病理生理学的功能模块。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验