Suppr超能文献

预测中年及老年人群中的抑郁症并揭示其异质性影响:一种机器学习方法。

Predicting depression and unravelling its heterogeneous influences in middle-aged and older people populations: a machine learning approach.

作者信息

Zhang Ling, Wei Ruigang, Zhou Jingwen, Tan Lin, Che Xiaolong, Zhang Minqinag, Ning Xiaoyue, Zhong Zhiliang

机构信息

School of Software and Internet of Things, Jiangxi University of Finance and Economics, Nanchang, China.

出版信息

BMC Psychol. 2025 Apr 17;13(1):395. doi: 10.1186/s40359-025-02691-3.

Abstract

BACKGROUND

Aging has become a global trend, and depression, as an accompanying issue, poses a significant threat to the health of middle-aged and older adults. Existing studies primarily rely on statistical methods such as logistic regression for small-scale data analysis, while research on the application of machine learning in large-scale data remains limited. Therefore, this study employs machine learning methods to explore the risk factors for depression among middle-aged and older adults in China.

METHODS

Using a two-step hybrid model combining long short-term memory (LSTM) and machine learning (ML), we compared 20 depression risk/protective factors in a balanced panel dataset of middle-aged and elderly Chinese adults (N = 3706; aged 45-94; 64.65% female; 41.20% middle-aged) from the China Health and Retirement Longitudinal Study (CHARLS). Data were collected across five waves (2011, 2013, 2015, 2018, and 2020). The LSTM model predicted risk factors for the fifth wave via data from the preceding four waves. Five ML models were then used to classify depression (yes/no) based on these factors, which included demographic, lifestyle, health, and socioeconomic variables.

RESULTS

The LSTM model effectively predicted depression-related variables (mean square error = 0.067). The average AUC of the five ML models ranged from 0.78 to 0.82. The key predictive factors were disability, life satisfaction, activities of daily living (ADL) impairment, chronic diseases, and self-reported memory. For the middle-aged group, the top three factors were disability, life satisfaction, and chronic diseases; for the Older people group, they were life satisfaction, chronic diseases, and ADL impairment.

CONCLUSION

The two-step hybrid model ("LSTM + ML") effectively predicted depression over 2 years via demographic and health data, aiding early diagnosis and intervention.

摘要

背景

老龄化已成为全球趋势,而抑郁症作为一个伴随问题,对中老年人群的健康构成了重大威胁。现有研究主要依靠逻辑回归等统计方法进行小规模数据分析,而机器学习在大规模数据中的应用研究仍然有限。因此,本研究采用机器学习方法探索中国中老年人群抑郁症的危险因素。

方法

我们使用长短期记忆网络(LSTM)和机器学习(ML)相结合的两步混合模型,在中国健康与养老追踪调查(CHARLS)的一个平衡面板数据集中,对20个抑郁症风险/保护因素进行了比较,该数据集包含3706名中国中老年成年人(年龄在45 - 94岁之间;女性占64.65%;中年人群占41.20%)。数据收集跨越五个时间段(2011年、2013年、2015年、2018年和2020年)。LSTM模型通过前四个时间段的数据预测第五个时间段的危险因素。然后使用五个ML模型根据这些因素对抑郁症(是/否)进行分类,这些因素包括人口统计学、生活方式、健康和社会经济变量。

结果

LSTM模型有效地预测了与抑郁症相关的变量(均方误差 = 0.067)。五个ML模型的平均曲线下面积(AUC)在0.78至0.82之间。关键预测因素为残疾、生活满意度、日常生活活动(ADL)受损、慢性病和自我报告的记忆力。对于中年人群,前三个因素是残疾、生活满意度和慢性病;对于老年人群,它们是生活满意度、慢性病和ADL受损。

结论

两步混合模型(“LSTM + ML”)通过人口统计学和健康数据有效地预测了两年内的抑郁症情况,有助于早期诊断和干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e74d/12004675/7572c06765f1/40359_2025_2691_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验