Suppr超能文献

评估用于抑郁症检测的机器学习分类算法和自然语言处理技术:一个实验案例研究。

Assessing ML classification algorithms and NLP techniques for depression detection: An experimental case study.

作者信息

Lorenzoni Giuliano, Tavares Cristina, Nascimento Nathalia, Alencar Paulo, Cowan Donald

机构信息

David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada.

出版信息

PLoS One. 2025 May 28;20(5):e0322299. doi: 10.1371/journal.pone.0322299. eCollection 2025.

Abstract

CONTEXT AND BACKGROUND

Depression has affected millions of people worldwide and has become one of the most common mental disorders. Early mental disorder detection can reduce costs for public health agencies and prevent other major comorbidities. Additionally, the shortage of specialized personnel is very concerning since depression diagnosis is highly dependent on expert professionals and is time-consuming. Research problems. Recent research has evidenced that machine learning (ML) and natural language processing (NLP) tools and techniques have significantly benefited the diagnosis of depression. However, there are still several challenges in the assessment of depression detection approaches in which other conditions such as post-traumatic stress disorder (PTSD) are present. These challenges include assessing alternatives in terms of data cleaning and pre-processing techniques, feature selection, and appropriate ML classification algorithms.

PURPOSE OF THE STUDY

This paper tackles such an assessment based on a case study that compares different ML classifiers, specifically in terms of data cleaning and pre-processing, feature selection, parameter setting, and model choices.

METHODOLOGY

The experimental case study is based on the Distress Analysis Interview Corpus - Wizard-of-Oz (DAIC-WOZ) dataset, which is designed to support the diagnosis of mental disorders such as depression, anxiety, and PTSD.

MAJOR FINDINGS

Besides the assessment of alternative techniques, we were able to build models with accuracy levels around 84% with Random Forest and XGBoost models, which is significantly higher than the results from the comparable literature which presented the level of accuracy of 72% from the SVM model.

CONCLUSIONS

More comprehensive assessments of ML classification algorithms and NLP techniques for depression detection can advance the state of the art in terms of improved experimental settings and performance.

摘要

背景与概述

抑郁症影响了全球数百万人,已成为最常见的精神障碍之一。早期发现精神障碍可降低公共卫生机构的成本,并预防其他主要的合并症。此外,由于抑郁症诊断高度依赖专家且耗时,专业人员短缺的问题十分令人担忧。研究问题。最近的研究表明,机器学习(ML)和自然语言处理(NLP)工具及技术在抑郁症诊断中发挥了显著作用。然而,在存在创伤后应激障碍(PTSD)等其他病症的情况下,评估抑郁症检测方法仍面临若干挑战。这些挑战包括在数据清理和预处理技术、特征选择以及合适的ML分类算法方面评估各种方法。

研究目的

本文基于一个案例研究进行此类评估,该研究比较了不同的ML分类器,特别是在数据清理和预处理、特征选择、参数设置及模型选择方面。

方法

实验案例研究基于困境分析访谈语料库 - 奥兹巫师(DAIC-WOZ)数据集,该数据集旨在支持抑郁症、焦虑症和PTSD等精神障碍的诊断。

主要发现

除了评估替代技术外,我们使用随机森林和XGBoost模型构建的模型准确率约为84%,这显著高于可比文献中支持向量机(SVM)模型72%的准确率。

结论

对用于抑郁症检测的ML分类算法和NLP技术进行更全面的评估,可在改进实验设置和性能方面推动技术发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eec0/12118987/5d98141ba2a1/pone.0322299.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验