Suppr超能文献

PIBLUP:用于动植物大规模遗传评估的高性能软件。

PIBLUP: High-Performance Software for Large-Scale Genetic Evaluation of Animals and Plants.

作者信息

Kang Huimin, Ning Chao, Zhou Lei, Zhang Shengli, Yang Ning, Liu Jian-Feng

机构信息

National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China.

Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, China Agricultural University, Beijing, China.

出版信息

Front Genet. 2018 Aug 14;9:226. doi: 10.3389/fgene.2018.00226. eCollection 2018.

Abstract

Today, the rapid increase in phenotypic and genotypic information is leading to larger mixed model equations (MMEs) and rendering genetic evaluation more time-consuming. It has been demonstrated that a preconditioned conjugate gradient (PCG) algorithm via an iteration on data (IOD) technique is the most efficient method of solving MME at a low computing cost. Commonly used software applications implementing PCG by IOD merely employ functions from the Intel Math Kernel Library (MKL) to accelerate numerical computations and have not taken full advantage of the multicores or multiprocessors of computer systems to reduce the execution time. Making the most of multicore/multiprocessor systems, we propose PIBLUP, a parallel, shared memory implementation of PCG by IOD to minimize the execution time of genetic evaluation. In addition to functions in MKL, PIBLUP uses Message Passing Interface (MPI) shared memory programming to parallelize code in the entire workflow where possible. Results from the analysis of the two datasets show that the execution time was reduced by more than 80% when solving MME using PIBLUP with 16 processes in parallel, compared to a serial program using a single process. PIBLUP is a high-performance tool for users to efficiently perform genetic evaluation. PIBLUP with its user manual is available at https://github.com/huiminkang/PIBLUP.

摘要

如今,表型和基因型信息的迅速增加导致混合模型方程(MME)规模增大,使得遗传评估耗时更长。研究表明,通过数据迭代(IOD)技术的预处理共轭梯度(PCG)算法是一种以低计算成本求解MME的最有效方法。常用的通过IOD实现PCG的软件应用程序仅使用英特尔数学核心库(MKL)的函数来加速数值计算,并未充分利用计算机系统的多核或多处理器来减少执行时间。为充分利用多核/多处理器系统,我们提出了PIBLUP,一种通过IOD实现PCG的并行共享内存实现方式,以最大限度地减少遗传评估的执行时间。除了MKL中的函数外,PIBLUP还使用消息传递接口(MPI)共享内存编程,尽可能在整个工作流程中对代码进行并行化。对两个数据集的分析结果表明,与使用单个进程的串行程序相比,使用16个进程并行的PIBLUP求解MME时,执行时间减少了80%以上。PIBLUP是一款高性能工具,可供用户高效地进行遗传评估。带有用户手册的PIBLUP可在https://github.com/huiminkang/PIBLUP获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb47/6102405/dc46a8890713/fgene-09-00226-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验