Suppr超能文献

MAGE:基于元发现者的基因组估计育种值,杂种优势系统中一种新颖的加性-显性单步模型。

MAGE: metafounders-assisted genomic estimation of breeding value, a novel additive-dominance single-step model in crossbreeding systems.

机构信息

State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.

Department of Animal Science, North Carolina State University, Raleigh, NC 27695, United States.

出版信息

Bioinformatics. 2024 Feb 1;40(2). doi: 10.1093/bioinformatics/btae044.

Abstract

MOTIVATION

Utilizing both purebred and crossbred data in animal genetics is widely recognized as an optimal strategy for enhancing the predictive accuracy of breeding values. Practically, the different genetic background among several purebred populations and their crossbred offspring populations limits the application of traditional prediction methods. Several studies endeavor to predict the crossbred performance via the partial relationship, which divides the data into distinct sub-populations based on the common genetic background, such as one single purebred population and its corresponding crossbred descendant. However, this strategy makes prediction inaccurate due to ignoring half of the parental information of crossbreed animals. Furthermore, dominance effects, although playing a significant role in crossbreeding systems, cannot be modeled under such a prediction model.

RESULTS

To overcome this weakness, we developed a novel multi-breed single-step model using metafounders to assess ancestral relationships across diverse breeds under a unified framework. We proposed to use multi-breed dominance combined relationship matrices to model additive and dominance effects simultaneously. Our method provides a straightforward way to evaluate the heterosis of crossbreeds and the breeding values of purebred parents efficiently and accurately. We performed simulation and real data analyses to verify the potential of our proposed method. Our proposed model improved prediction accuracy under all scenarios considered compared to commonly used methods.

AVAILABILITY AND IMPLEMENTATION

The software for implementing our method is available at https://github.com/CAU-TeamLiuJF/MAGE.

摘要

动机

在动物遗传学中,利用纯种和杂交数据被广泛认为是提高育种值预测准确性的最佳策略。实际上,几个纯种群体之间以及它们的杂交后代群体之间不同的遗传背景限制了传统预测方法的应用。一些研究试图通过部分关系来预测杂交表现,该关系根据共同的遗传背景将数据分为不同的亚群体,例如一个单一的纯种群体及其相应的杂交后代。然而,由于忽略了杂交动物一半的父母信息,这种策略使得预测不准确。此外,尽管显性效应在杂交系统中起着重要作用,但在这种预测模型下无法对其进行建模。

结果

为了克服这一弱点,我们使用元发现者开发了一种新的多品种单步模型,在统一框架下评估不同品种之间的祖先关系。我们建议使用多品种显性联合关系矩阵来同时模拟加性和显性效应。我们的方法提供了一种简单的方法,可以有效地和准确地评估杂交种的杂种优势和纯种父母的育种值。我们进行了模拟和真实数据分析,以验证我们提出的方法的潜力。与常用方法相比,我们提出的模型在所有考虑的情况下都提高了预测准确性。

可用性和实现

我们的方法的软件可在 https://github.com/CAU-TeamLiuJF/MAGE 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea04/11212483/0864a4e2a158/btae044f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验