Hell Martin G, Ehlen Niels, Senkovskiy Boris V, Hasdeo Eddwi H, Fedorov Alexander, Dombrowski Daniela, Busse Carsten, Michely Thomas, di Santo Giovanni, Petaccia Luca, Saito Riichiro, Grüneis Alexander
II. Physikalisches Institut , Universität zu Köln , Zülpicher Strasse 77 , 50937 Köln , Germany.
Department of Physics , Tohoku University , Sendai 980-8578 , Japan.
Nano Lett. 2018 Sep 12;18(9):6045-6056. doi: 10.1021/acs.nanolett.8b02979. Epub 2018 Sep 5.
We employ ultra-high vacuum (UHV) Raman spectroscopy in tandem with angle-resolved photoemission (ARPES) to investigate the doping-dependent Raman spectrum of epitaxial graphene on Ir(111). The evolution of Raman spectra from pristine to heavily Cs doped graphene up to a carrier concentration of 4.4 × 10 cm is investigated. At this doping, graphene is at the onset of the Lifshitz transition and renormalization effects reduce the electronic bandwidth. The optical transition at the saddle point in the Brillouin zone then becomes experimentally accessible by ultraviolet (UV) light excitation, which achieves resonance Raman conditions in close vicinity to the van Hove singularity in the joint density of states. The position of the Raman G band of fully doped graphene/Ir(111) shifts down by ∼60 cm. The G band asymmetry of Cs doped epitaxial graphene assumes an unusual strong Fano asymmetry opposite to that of the G band of doped graphene on insulators. Our calculations can fully explain these observations by substrate dependent quantum interference effects in the scattering pathways for vibrational and electronic Raman scattering.
我们采用超高真空(UHV)拉曼光谱与角分辨光电子能谱(ARPES)相结合的方法,来研究Ir(111)上外延石墨烯的掺杂依赖拉曼光谱。研究了从原始石墨烯到重铯掺杂石墨烯直至载流子浓度达到4.4×10¹³ cm⁻²时拉曼光谱的演变。在此掺杂水平下,石墨烯处于里夫希茨转变的起始阶段,重整化效应降低了电子带宽。布里渊区鞍点处的光学跃迁随后通过紫外(UV)光激发在实验上变得可及,这在态密度联合分布中接近范霍夫奇点处实现了共振拉曼条件。完全掺杂的石墨烯/Ir(111)的拉曼G带位置向下移动了约60 cm⁻¹。铯掺杂外延石墨烯的G带不对称性呈现出一种异常强烈的法诺不对称性,与绝缘体上掺杂石墨烯的G带不对称性相反。我们的计算可以通过振动和电子拉曼散射的散射路径中依赖于衬底的量子干涉效应,充分解释这些观察结果。