Suppr超能文献

超越范霍夫奇点的石墨烯过掺杂

Overdoping Graphene beyond the van Hove Singularity.

作者信息

Rosenzweig Philipp, Karakachian Hrag, Marchenko Dmitry, Küster Kathrin, Starke Ulrich

机构信息

Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany.

Helmholtz-Zentrum Berlin für Materialien und Energie, Elektronenspeicherring BESSY II, Albert-Einstein-Straße 15, 12489 Berlin, Germany.

出版信息

Phys Rev Lett. 2020 Oct 23;125(17):176403. doi: 10.1103/PhysRevLett.125.176403.

Abstract

At very high doping levels the van Hove singularity in the π^{} band of graphene becomes occupied and exotic ground states possibly emerge, driven by many-body interactions. Employing a combination of ytterbium intercalation and potassium adsorption, we n dope epitaxial graphene on silicon carbide past the π^{} van Hove singularity, up to a charge carrier density of 5.5×10^{14}  cm^{-2}. This regime marks the unambiguous completion of a Lifshitz transition in which the Fermi surface topology has evolved from two electron pockets into a giant hole pocket. Angle-resolved photoelectron spectroscopy confirms these changes to be driven by electronic structure renormalizations rather than a rigid band shift. Our results open up the previously unreachable beyond-van-Hove regime in the phase diagram of epitaxial graphene, thereby accessing an unexplored landscape of potential exotic phases in this prototype two-dimensional material.

摘要

在非常高的掺杂水平下,石墨烯π带中的范霍夫奇点被占据,并且在多体相互作用的驱动下可能出现奇异的基态。通过结合镱插层和钾吸附,我们对碳化硅上的外延石墨烯进行n型掺杂,使其越过π范霍夫奇点,直至电荷载流子密度达到5.5×10¹⁴ cm⁻²。这个区域标志着里夫希茨转变的明确完成,其中费米面拓扑结构已从两个电子口袋演变为一个巨大的空穴口袋。角分辨光电子能谱证实这些变化是由电子结构重整化而非刚性能带移动驱动的。我们的结果开辟了外延石墨烯相图中以前无法达到的超越范霍夫区域,从而在这种原型二维材料中进入了一个未被探索的潜在奇异相领域。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验