Suppr超能文献

在羊膜动物的进化过程中丢失的 Ras-dva 小 GTPases 调节无羊膜动物的再生。

Ras-dva small GTPases lost during evolution of amniotes regulate regeneration in anamniotes.

机构信息

Laboratory of Molecular Bases of Embryogenesis, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russian Federation.

出版信息

Sci Rep. 2018 Aug 29;8(1):13035. doi: 10.1038/s41598-018-30811-0.

Abstract

In contrast to amniotes (reptiles, birds and mammals), anamniotes (fishes and amphibians) can effectively regenerate body appendages such as fins, limbs and tails. Why such a useful capability was progressively lost in amniotes remains unknown. As we have hypothesized recently, one of the reasons for this could be loss of some genes regulating the regeneration in evolution of amniotes. Here, we demonstrate the validity of this hypothesis by showing that genes of small GTPases Ras-dva1 and Ras-dva2, that had been lost in a stepwise manner during evolution of amniotes and disappeared completely in placental mammals, are important for regeneration in anamniotes. Both Ras-dva genes are quickly activated in regenerative wound epithelium and blastema forming in the amputated adult Danio rerio fins and Xenopus laevis tadpoles' tails and hindlimb buds. Down-regulation of any of two Ras-dva genes in fish and frog resulted in a retardation of regeneration accompanied by down-regulation of the regeneration marker genes. On the other hand, Ras-dva over-expression in tadpoles' tails restores regeneration capacity during the refractory period when regeneration is blocked due to natural reasons. Thus our data on Ras-dva genes, which were eliminated in amniotes but play role in anamniotes regeneration regulation, satisfy our hypothesis.

摘要

与羊膜动物(爬行动物、鸟类和哺乳动物)相比,无羊膜动物(鱼类和两栖类)能够有效地再生身体附属物,如鳍、肢体和尾巴。为什么这种有用的能力在羊膜动物中逐渐丧失仍然未知。正如我们最近假设的那样,其中一个原因可能是在羊膜动物的进化过程中失去了一些调节再生的基因。在这里,我们通过证明 Ras-dva1 和 Ras-dva2 这两个小 GTPase 基因的重要性,证明了这一假设的有效性,这两个基因在羊膜动物的进化过程中逐步丢失,在胎盘哺乳动物中完全消失。在再生性伤口上皮和再生芽形成过程中,Ras-dva 基因在被截肢的成年斑马鱼鳍和非洲爪蟾蝌蚪尾巴和后肢芽中迅速激活。在鱼类和青蛙中下调任何一个 Ras-dva 基因都会导致再生延迟,同时伴随再生标记基因的下调。另一方面,Ras-dva 在蝌蚪尾巴中的过表达在由于自然原因导致再生受阻的休眠期恢复了再生能力。因此,我们关于 Ras-dva 基因的研究满足了我们的假设,这些基因在羊膜动物中被消除,但在无羊膜动物的再生调控中发挥作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d72b/6115384/43351e40d2c9/41598_2018_30811_Fig1_HTML.jpg

相似文献

1
Ras-dva small GTPases lost during evolution of amniotes regulate regeneration in anamniotes.
Sci Rep. 2018 Aug 29;8(1):13035. doi: 10.1038/s41598-018-30811-0.
2
Expression patterns of genes encoding small GTPases Ras-dva-1 and Ras-dva-2 in the Xenopus laevis tadpoles.
Gene Expr Patterns. 2011 Jan-Feb;11(1-2):156-61. doi: 10.1016/j.gep.2010.10.009. Epub 2010 Nov 4.
3
Loss of the ability to regenerate body appendages in vertebrates: from side effects of evolutionary innovations to gene loss.
Biol Rev Camb Philos Soc. 2024 Oct;99(5):1868-1888. doi: 10.1111/brv.13102. Epub 2024 May 30.
7
Stimulation of regenerative blastema formation in lizards as a model to analyze limb regeneration in amniotes.
Histol Histopathol. 2019 Oct;34(10):1111-1120. doi: 10.14670/HH-18-123. Epub 2019 May 6.
9
Wide-scale identification of novel/eliminated genes responsible for evolutionary transformations.
Biol Direct. 2023 Aug 11;18(1):45. doi: 10.1186/s13062-023-00405-6.
10
Identification of genes associated with regenerative success of Xenopus laevis hindlimbs.
BMC Dev Biol. 2008 Jun 23;8:66. doi: 10.1186/1471-213X-8-66.

引用本文的文献

1
The emergence of in gnathostomes may have contributed to the evolution of paired appendages.
Front Cell Dev Biol. 2025 Aug 29;13:1649996. doi: 10.3389/fcell.2025.1649996. eCollection 2025.
2
Mechanisms underpinning spontaneous spinal cord regeneration.
Development. 2025 Oct 15;152(20). doi: 10.1242/dev.204790. Epub 2025 Jul 30.
4
Wide-scale identification of novel/eliminated genes responsible for evolutionary transformations.
Biol Direct. 2023 Aug 11;18(1):45. doi: 10.1186/s13062-023-00405-6.
5
Distinct patterns of gene expression during regeneration and asexual reproduction in the annelid Pristina leidyi.
J Exp Zool B Mol Dev Evol. 2022 Nov;338(7):405-420. doi: 10.1002/jez.b.23143. Epub 2022 May 23.
6
MAPK/ERK Pathway as a Central Regulator in Vertebrate Organ Regeneration.
Int J Mol Sci. 2022 Jan 27;23(3):1464. doi: 10.3390/ijms23031464.
7
The Secreted Protein Disulfide Isomerase Ag1 Lost by Ancestors of Poorly Regenerating Vertebrates Is Required for Tail Regeneration.
Front Cell Dev Biol. 2021 Oct 5;9:738940. doi: 10.3389/fcell.2021.738940. eCollection 2021.
9
Spatiotemporal Characterization of Anterior Segment Mesenchyme Heterogeneity During Zebrafish Ocular Anterior Segment Development.
Front Cell Dev Biol. 2020 May 27;8:379. doi: 10.3389/fcell.2020.00379. eCollection 2020.
10
The AP-1 transcription factor JunB functions in Xenopus tail regeneration by positively regulating cell proliferation.
Biochem Biophys Res Commun. 2020 Feb 19;522(4):990-995. doi: 10.1016/j.bbrc.2019.11.060. Epub 2019 Dec 4.

本文引用的文献

1
A Tissue-Mapped Axolotl De Novo Transcriptome Enables Identification of Limb Regeneration Factors.
Cell Rep. 2017 Jan 17;18(3):762-776. doi: 10.1016/j.celrep.2016.12.063.
7
Regeneration: the ultimate example of wound healing.
Semin Cell Dev Biol. 2012 Dec;23(9):954-62. doi: 10.1016/j.semcdb.2012.09.013. Epub 2012 Oct 8.
8
Expression patterns of genes encoding small GTPases Ras-dva-1 and Ras-dva-2 in the Xenopus laevis tadpoles.
Gene Expr Patterns. 2011 Jan-Feb;11(1-2):156-61. doi: 10.1016/j.gep.2010.10.009. Epub 2010 Nov 4.
9
IGF signaling between blastema and wound epidermis is required for fin regeneration.
Development. 2010 Mar;137(6):871-9. doi: 10.1242/dev.043885.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验