Yu Lei, Han Ruixin, Sang Xiahan, Liu Jue, Thomas Melonie P, Hudak Bethany M, Patel Amita, Page Katharine, Guiton Beth S
Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , United States.
ACS Nano. 2018 Sep 25;12(9):9051-9059. doi: 10.1021/acsnano.8b02946. Epub 2018 Aug 30.
The creation of nanomaterials requires simultaneous control of not only crystalline structure and composition but also crystal shape and size, or morphology, which can pose a significant synthetic challenge. Approaches to address this challenge include creating nanocrystals whose morphologies echo their underlying crystal structures, such as the growth of platelets of two-dimensional layered crystal structures, or conversely attempting to decouple the morphology from structure by converting a structure or composition after first creating crystals with a desired morphology. A particularly elegant example of this latter approach involves the topotactic conversion of a nanoparticle from one structure and composition to another, since the orientation relationship between the initial and final product allows the crystallinity and orientation to be maintained throughout the process. Here we report a mechanism for creating hollow nanostructures, illustrated via the decomposition of β-FeOOH nanorods to nanocapsules of α-FeO, γ-FeO, FeO, and FeO, depending on the reaction conditions, while retaining single-crystallinity and the outer nanorod morphology. Using in situ TEM, we demonstrate that the nanostructured morphology of the starting material allows kinetic trapping of metastable phases with a topotactic relationship to the final thermodynamically stable phase.
纳米材料的制备不仅需要同时控制晶体结构和组成,还需要控制晶体形状和尺寸,即形态,这可能带来重大的合成挑战。应对这一挑战的方法包括制备形态与其底层晶体结构相呼应的纳米晶体,例如二维层状晶体结构的片状生长,或者相反,在首先制备具有所需形态的晶体后,通过改变结构或组成来使形态与结构解耦。后一种方法的一个特别精妙的例子涉及纳米颗粒从一种结构和组成到另一种结构和组成的拓扑转化,因为初始产物和最终产物之间的取向关系使得在整个过程中能够保持结晶度和取向。在此,我们报道一种制备中空纳米结构的机制,通过β-FeOOH纳米棒根据反应条件分解为α-FeO、γ-FeO、FeO和FeO的纳米胶囊来说明,同时保持单晶性和外部纳米棒形态。利用原位透射电子显微镜,我们证明起始材料的纳米结构形态能够动力学捕获与最终热力学稳定相具有拓扑关系的亚稳相。