Suppr超能文献

肥胖患者困难插管多变量模型的预测性能。

Predictive performance of a multivariable difficult intubation model for obese patients.

机构信息

Department of Anesthesiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand.

Division of Anesthesiology, Phahonpolpayuhasena Hospital, Kanchanaburi, Thailand.

出版信息

PLoS One. 2018 Aug 30;13(8):e0203142. doi: 10.1371/journal.pone.0203142. eCollection 2018.

Abstract

BACKGROUND

A predictive model of scores of difficult intubation (DI) may help physicians screen for airway difficulty to reduce morbidity and mortality in obese patients. The present study aimed to set up and evaluate the predictive performance of a newly developed, practical, multivariate DI model for obese patients.

METHODS

A prospective multi-center study was undertaken on adults with a body mass index (BMI) of 30 kg/m2 or more who were undergoing conventional endotracheal intubation. The BMI and 10 preoperative airway tests (namely, malformation of the teeth in the upper jaw, the modified Mallampati test [MMT], the upper lip bite test, neck mobility testing, the neck circumference [NC], the length of the neck, the interincisor gap, the hyomental distance, the thyromental distance [TM] and the sternomental distance) were examined. A DI was defined as one with an intubation difficulty scale (IDS) score ≥ 5.

RESULTS

The 1,015 patients recruited for the study had a mean BMI of 34.2 (standard deviation: 4.3 kg/m2). The proportions for easy intubation, slight DI and DI were 81%, 15.8% and 3.2%, respectively. Drawing on the results of a multivariate analysis, clinically meaningful variables related to obesity (namely, BMI, MMT, and the ratio of NC to TM) were used to build a predictive model for DI. Nevertheless, the best model only had a fair predictive performance. The area under the receiver operating characteristic curve (AUC) was 0.71 (95% confidence interval 0.68-0.84).

CONCLUSIONS

The predictive performance of the selected model showed limited benefit for preoperative screening to predict DI among obese patients.

摘要

背景

预测困难插管(DI)评分的模型有助于医生筛选气道困难,降低肥胖患者的发病率和死亡率。本研究旨在建立并评估一种新开发的、实用的肥胖患者多变量 DI 模型的预测性能。

方法

对 BMI 为 30kg/m2 或以上的成人进行前瞻性多中心研究,这些患者正在接受常规气管插管。检查 BMI 和 10 项术前气道测试(即上颌牙齿畸形、改良 Mallampati 测试[MMT]、上唇咬测试、颈部活动度测试、颈围[NC]、颈部长度、切牙间隙、舌骨-甲状软骨距离、甲状软骨-喉结距离[TM]和胸骨-喉结距离)。DI 定义为插管难度量表(IDS)评分≥5。

结果

该研究共纳入 1015 例患者,平均 BMI 为 34.2(标准差:4.3kg/m2)。容易插管、轻微 DI 和 DI 的比例分别为 81%、15.8%和 3.2%。基于多变量分析的结果,与肥胖相关的有临床意义的变量(即 BMI、MMT 和 NC/TM 比值)被用于构建 DI 的预测模型。然而,最佳模型仅具有中等的预测性能。受试者工作特征曲线下面积(AUC)为 0.71(95%置信区间 0.68-0.84)。

结论

所选模型的预测性能对术前筛选肥胖患者 DI 的预测作用有限。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fa7/6117055/5c55bf2ff15d/pone.0203142.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验