Suppr超能文献

出租车拼车路径优化。

Path optimization of taxi carpooling.

机构信息

School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou, China.

出版信息

PLoS One. 2018 Aug 30;13(8):e0203221. doi: 10.1371/journal.pone.0203221. eCollection 2018.

Abstract

The problem that passengers are hard to take taxis while empty driving rate is high widely exists under the traditional taxi operation mode. The implementation of taxi carpooling mode can alleviate the problem in a certain extent. The objective of this study is to optimize the taxi carpooling path. Firstly, the taxi carpooling path optimization model with single objective and its extended model with multiple objectives are built respectively. Then, the single objective path optimization model of taxi carpooling is solved based on the improved single objective genetic algorithm, and the multiple-objective path optimization model of taxi carpooling is solved based on the improved multiple-objective genetic algorithm. Finally, a case study is carried out based on a road network with 24 nodes. The case study results show the path optimization models and algorithms of taxi carpooling proposed in the paper can quickly get the taxi carpooling path, and can increase the income of taxi driver while reduce the cost for passengers.

摘要

传统出租车运营模式下,空载率高、乘客打车难的问题广泛存在。出租车拼车模式的实施在一定程度上可以缓解该问题。本研究旨在优化出租车拼车路径。首先,分别建立了单目标和多目标的出租车拼车路径优化模型。然后,基于改进的单目标遗传算法求解出租车拼车单目标路径优化模型,基于改进的多目标遗传算法求解出租车拼车多目标路径优化模型。最后,基于一个有 24 个节点的路网进行案例研究。案例研究结果表明,本文提出的出租车拼车路径优化模型和算法能够快速得到出租车拼车路径,在提高出租车司机收入的同时降低了乘客的出行成本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验