Crozet Pierre, Navarro Francisco J, Willmund Felix, Mehrshahi Payam, Bakowski Kamil, Lauersen Kyle J, Pérez-Pérez Maria-Esther, Auroy Pascaline, Gorchs Rovira Aleix, Sauret-Gueto Susana, Niemeyer Justus, Spaniol Benjamin, Theis Jasmine, Trösch Raphael, Westrich Lisa-Desiree, Vavitsas Konstantinos, Baier Thomas, Hübner Wolfgang, de Carpentier Felix, Cassarini Mathieu, Danon Antoine, Henri Julien, Marchand Christophe H, de Mia Marcello, Sarkissian Kevin, Baulcombe David C, Peltier Gilles, Crespo José-Luis, Kruse Olaf, Jensen Poul-Erik, Schroda Michael, Smith Alison G, Lemaire Stéphane D
Institut de Biologie Physico-Chimique, UMR 8226 , CNRS, Sorbonne Université , Paris , France.
Department of Plant Sciences , University of Cambridge , Cambridge , CB2 3EA , U.K.
ACS Synth Biol. 2018 Sep 21;7(9):2074-2086. doi: 10.1021/acssynbio.8b00251. Epub 2018 Sep 5.
Microalgae are regarded as promising organisms to develop innovative concepts based on their photosynthetic capacity that offers more sustainable production than heterotrophic hosts. However, to realize their potential as green cell factories, a major challenge is to make microalgae easier to engineer. A promising approach for rapid and predictable genetic manipulation is to use standardized synthetic biology tools and workflows. To this end we have developed a Modular Cloning toolkit for the green microalga Chlamydomonas reinhardtii. It is based on Golden Gate cloning with standard syntax, and comprises 119 openly distributed genetic parts, most of which have been functionally validated in several strains. It contains promoters, UTRs, terminators, tags, reporters, antibiotic resistance genes, and introns cloned in various positions to allow maximum modularity. The toolkit enables rapid building of engineered cells for both fundamental research and algal biotechnology. This work will make Chlamydomonas the next chassis for sustainable synthetic biology.
微藻被视为有前景的生物体,可基于其光合作用能力开发创新概念,与异养宿主相比,光合作用能实现更可持续的生产。然而,要发挥其作为绿色细胞工厂的潜力,一个主要挑战是使微藻更易于进行基因工程改造。一种用于快速且可预测的基因操作的有前景的方法是使用标准化的合成生物学工具和工作流程。为此,我们为绿色微藻莱茵衣藻开发了一个模块化克隆工具包。它基于具有标准语法的金门克隆,包含119个公开分发的遗传元件,其中大部分已在多个菌株中进行了功能验证。它包含启动子、非翻译区、终止子、标签、报告基因、抗生素抗性基因和内含子,这些元件克隆在不同位置以实现最大程度的模块化。该工具包能够快速构建用于基础研究和藻类生物技术的工程细胞。这项工作将使衣藻成为可持续合成生物学的下一个底盘。