Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitaetsstrasse 27, 33615 Bielefeld, Germany.
ACS Synth Biol. 2021 Apr 16;10(4):847-856. doi: 10.1021/acssynbio.0c00632. Epub 2021 Mar 25.
Microalgal biotechnology promises sustainable light-driven production of valuable bioproducts and addresses urgent demands to attain a sustainable economy. However, to unfold its full potential as a platform for biotechnology, new and powerful tools for nuclear engineering need to be established. , the model for microalgal synthetic biology and genetic engineering has already been used to produce various bioproducts. Nevertheless, low transgene titers, the lack of potent expression elements, and sparse comparative evaluation prevents further development of as a biotechnological host. By systematically evaluating existing expression elements combined with rational promoter engineering, we established novel synthetic expression elements, improved the standardized application of synthetic biology tools, and unveiled an existing synergism between the PSAD 5' UTR and its corresponding chloroplast targeting peptide. Promoter engineering strategies, implemented in a newly designed synthetic algal promoter, increased the production of the sesquiterpene ()-α-bisabolene by 18-fold compared to its native version and 4-fold to commonly used expression elements. Our results improve the application of synthetic biology in microalgae and display a significant step toward establishing as a sustainable green cell-factory.
微藻生物技术有望实现可持续的光驱动有价值的生物产物的生产,并满足实现可持续经济的迫切需求。然而,要充分发挥其作为生物技术平台的潜力,需要建立新的、强大的核工程工具。目前,微藻合成生物学和遗传工程的模型已经被用于生产各种生物制品。然而,转基因滴度低、有效表达元件缺乏以及稀疏的比较评估阻碍了作为生物技术宿主的进一步发展。通过系统地评估现有的表达元件并结合合理的启动子工程,我们建立了新的合成表达元件,改进了合成生物学工具的标准化应用,并揭示了 PSAD5'UTR 与其相应的叶绿体靶向肽之间的现有协同作用。在新设计的合成藻类启动子中实施的启动子工程策略,与天然版本相比,将倍半萜()-α-双醇烯的产量提高了 18 倍,与常用的表达元件相比提高了 4 倍。我们的研究结果改进了合成生物学在微藻中的应用,并朝着建立可持续的绿色细胞工厂的方向迈出了重要的一步。