Department of Chemistry , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States.
J Am Chem Soc. 2018 Sep 12;140(36):11308-11316. doi: 10.1021/jacs.8b05484. Epub 2018 Aug 31.
Purine radical cations (dA and dG) are the primary hole carriers of DNA hole migration due to their favorable oxidation potential. Much less is known about the reactivity of higher energy pyrimidine radical cations. The thymidine radical cation (T) was produced at a defined position in DNA from a photochemical precursor for the first time. T initiates hole transfer to dGGG triplets in DNA. Hole localization in a dGGG sequence accounts for ∼26% of T formed under aerobic conditions in 9. Reduction to yield thymidine is also quantified. 5-Formyl-2'-deoxyuridine is formed in low yield in DNA when T is independently generated. This is inconsistent with mechanistic proposals concerning product formation from electron transfer in poly(dA-T) sequences, following hole injection by a photoexcited anthraquinone. Additional evidence that is inconsistent with the original mechanism was obtained using hole injection by a photoexcited anthraquinone in DNA. Instead of requiring the intermediacy of T, the strand damage patterns observed in those studies, in which thymidine is oxidized, are reproduced by independent generation of 2'-deoxyadenosin- N6-yl radical (dA). Tandem lesion formation by dA provides the basis for an alternative mechanism for thymidine oxidation ascribed to hole migration in poly(dA-T) sequences. Overall, these experiments indicate that the final products formed following DNA hole transfer in poly(dA-T) sequences do not result from deprotonation or hydration of T, but rather from deprotonation of the more stable dA, to form dA, which produces tandem lesions in which 5'-flanking thymidines are oxidized.
嘌呤自由基阳离子(dA 和 dG)由于其有利的氧化电位,是 DNA 空穴迁移的主要空穴载体。关于更高能量的嘧啶自由基阳离子的反应性知之甚少。胸腺嘧啶自由基阳离子(T)首次从前体化合物在 DNA 中特定位置生成。T 引发空穴转移到 DNA 中的 dGGG 三核苷酸。在有氧条件下,T 形成约 26%的空穴定位于 dGGG 序列中,这占 T 形成的比例。还定量了生成胸腺嘧啶的还原反应。当 T 独立生成时,在 DNA 中低产率形成 5-甲酰基-2'-脱氧尿苷。这与电子转移在聚(dA-T)序列中引发空穴注入的机制不一致,机制涉及蒽醌光激发后空穴注入。使用 DNA 中光激发的蒽醌进行空穴注入获得了与原始机制不一致的额外证据。观察到的链损伤模式不需要 T 的中间产物,这些研究中观察到的胸腺嘧啶被氧化,通过独立生成 2'-脱氧腺嘌呤-N6-基自由基(dA)重现。dA 的串联损伤形成提供了另一种机制的基础,该机制归因于聚(dA-T)序列中的空穴迁移导致胸腺嘧啶氧化。总的来说,这些实验表明,在聚(dA-T)序列中的 DNA 空穴转移之后形成的最终产物不是由于 T 的去质子化或水合,而是由于更稳定的 dA 的去质子化,形成 dA,这导致 5'-侧翼胸腺嘧啶被氧化的串联损伤。