School of Mathematical Sciences, Nankai University, Tianjin, China.
Center for Applied Mathematics, Tianjin University, Tianjin, China.
Bioinformatics. 2019 Mar 15;35(6):930-936. doi: 10.1093/bioinformatics/bty756.
The interactions between protein and nucleic acids play a key role in various biological processes. Accurate recognition of the residues that bind nucleic acids can facilitate the study of uncharacterized protein-nucleic acids interactions. The accuracy of existing nucleic acids-binding residues prediction methods is relatively low.
In this work, we introduce NucBind, a novel method for the prediction of nucleic acids-binding residues. NucBind combines the predictions from a support vector machine-based ab-initio method SVMnuc and a template-based method COACH-D. SVMnuc was trained with features from three complementary sequence profiles. COACH-D predicts the binding residues based on homologous templates identified from a nucleic acids-binding library. The proposed methods were assessed and compared with other peering methods on three benchmark datasets. Experimental results show that NucBind consistently outperforms other state-of-the-art methods. Though with higher accuracy, similar to many other ab-initio methods, cross prediction between DNA and RNA-binding residues was also observed in SVMnuc and NucBind. We attribute the success of NucBind to two folds. The first is the utilization of improved features extracted from three complementary sequence profiles in SVMnuc. The second is the combination of two complementary methods: the ab-initio method SVMnuc and the template-based method COACH-D.
http://yanglab.nankai.edu.cn/NucBind.
Supplementary data are available at Bioinformatics online.
蛋白质和核酸之间的相互作用在各种生物过程中起着关键作用。准确识别与核酸结合的残基可以促进对未表征的蛋白质-核酸相互作用的研究。现有核酸结合残基预测方法的准确性相对较低。
在这项工作中,我们引入了 NucBind,这是一种用于预测核酸结合残基的新方法。NucBind 结合了基于支持向量机的从头预测方法 SVMnuc 和基于模板的方法 COACH-D 的预测结果。SVMnuc 是使用来自三个互补序列特征的特征进行训练的。COACH-D 根据从核酸结合文库中识别出的同源模板来预测结合残基。提出的方法在三个基准数据集上进行了评估和比较,并与其他 peering 方法进行了比较。实验结果表明,NucBind 始终优于其他最先进的方法。尽管 SVMnuc 和 NucBind 的准确性更高,但与许多其他从头预测方法一样,也观察到 DNA 和 RNA 结合残基之间的交叉预测。我们将 NucBind 的成功归因于两个方面。一方面是在 SVMnuc 中利用从三个互补序列特征中提取的改进特征。另一方面是两种互补方法的结合:基于从头预测的方法 SVMnuc 和基于模板的方法 COACH-D。
http://yanglab.nankai.edu.cn/NucBind。
补充数据可在生物信息学在线获得。