School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China.
Environmental Microbiome Research Center, Sun Yat-Sen University, Guangzhou, China.
Appl Environ Microbiol. 2018 Oct 17;84(21). doi: 10.1128/AEM.01300-18. Print 2018 Nov 1.
Reductive dehalogenation mediated by organohalide-respiring bacteria plays a critical role in the global cycling of organohalides. Nonetheless, information on the dehalogenation enantioselectivity of organohalide-respiring bacteria remains limited. In this study, we report the enantioselective dechlorination of chiral polychlorinated biphenyls (PCBs) by CG1. CG1 preferentially removed halogens from the (-)-enantiomers of the three major environmentally relevant chiral PCBs (PCB174, PCB149, and PCB132), and the enantiomer compositions of the dechlorination products depended on their parent organohalides. The assays with crude cell extracts or concentrated whole cells and the experiments with living cells showed similar enantioselectivities, in contrast with the distinct enantiomeric enrichment factors (ε) of the substrate chiral PCBs. Additionally, these results suggest that concentrated whole cells might be an alternative to crude cell extracts in tests of reductive dehalogenation activities. The enantioselective dechlorination of other chiral PCBs that we resolved via gas chromatography further confirmed the preference of CG1 for the (-)-enantiomers. A variety of agrochemicals and pharmaceuticals are chiral. Due to the enantioselectivity in biological processes, enantiomers of chiral compounds may have different environmental occurrences, fates, and ecotoxicologies. Many chiral organohalides exist in anaerobic or anoxic soils and sediments, and organohalide-respiring bacteria play a major role in the environmental attenuation and global cycling of these chiral organohalides. Therefore, it is important to investigate the dehalogenation enantioselectivity of organohalide-respiring bacteria. This study reports the discovery of enantioselective dechlorination of chiral PCBs by CG1, which provides insights into the dehalogenation enantioselectivity of and may shed light on future PCB bioremediation efforts to prevent enantioselective biological side effects.
有机卤化物呼吸细菌介导的还原脱卤作用在全球有机卤化物循环中起着关键作用。尽管如此,关于有机卤化物呼吸细菌的脱卤对映选择性的信息仍然有限。在这项研究中,我们报告了 CG1 对手性多氯联苯(PCBs)的对映选择性脱氯。CG1 优先从三种主要环境相关手性 PCB(PCB174、PCB149 和 PCB132)的(-)对映异构体中去除卤素,并且脱卤产物的对映体组成取决于它们的母体有机卤化物。用粗细胞提取物或浓缩全细胞进行的测定以及用活细胞进行的实验均显示出相似的对映选择性,这与底物手性 PCB 的明显对映体富集因子(ε)不同。此外,这些结果表明浓缩全细胞可能是替代粗细胞提取物进行还原脱卤活性测定的一种选择。我们通过气相色谱法进一步解析的其他手性 PCB 的对映选择性脱氯进一步证实了 CG1 对(-)对映体的偏好。各种农用化学品和药物都是手性的。由于生物过程中的对映选择性,手性化合物的对映异构体可能具有不同的环境发生、命运和生态毒理学。许多手性有机卤化物存在于厌氧或缺氧土壤和沉积物中,有机卤化物呼吸细菌在这些手性有机卤化物的环境衰减和全球循环中起着主要作用。因此,研究有机卤化物呼吸细菌的脱卤对映选择性很重要。本研究报告了 CG1 对手性 PCB 的对映选择性脱氯的发现,这为了解有机卤化物呼吸细菌的脱卤对映选择性提供了线索,并可能为未来的 PCB 生物修复工作提供启示,以防止对映选择性的生物副作用。