Suppr超能文献

电荷相互作用可以主导核糖体上的耦合折叠和结合。

Charge Interactions Can Dominate Coupled Folding and Binding on the Ribosome.

机构信息

Department of Biochemistry, University of Zurich, Zurich, Switzerland; Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland.

Department of Biochemistry, University of Zurich, Zurich, Switzerland.

出版信息

Biophys J. 2018 Sep 18;115(6):996-1006. doi: 10.1016/j.bpj.2018.07.037. Epub 2018 Aug 15.

Abstract

Interactions between emerging nascent polypeptide chains and the ribosome can modulate cotranslational protein folding. However, it has remained unclear how such interactions can affect the binding of nascent chains to their cellular targets. We thus investigated on the ribosome the interaction between two intrinsically disordered proteins of opposite charge, ACTR and NCBD, which form a high-affinity complex in a coupled folding-and-binding reaction. Using fluorescence correlation spectroscopy and arrest-peptide-mediated force measurements in vitro and in vivo, we find that the ACTR-NCBD complex can form cotranslationally but only with ACTR as the nascent chain and NCBD free in solution, not vice versa. We show that this surprising asymmetry in behavior is caused by pronounced charge interactions: attraction of the positively charged nascent chain of NCBD to the negatively charged ribosomal surface competes with complex formation and prevents ACTR binding. In contrast, the negatively charged nascent ACTR is repelled by the ribosomal surface and thus remains available for productively binding its partner. Electrostatic interactions may thus be more important for cotranslational folding and binding than previously thought.

摘要

新生多肽链与核糖体之间的相互作用可以调节共翻译蛋白质折叠。然而,目前尚不清楚这种相互作用如何影响新生链与细胞靶标的结合。因此,我们研究了核糖体上两种带相反电荷的固有无序蛋白 ACTR 和 NCBD 之间的相互作用,它们在折叠和结合的偶联反应中形成高亲和力复合物。使用荧光相关光谱法和体外和体内的肽段捕获介导的力测量,我们发现 ACTR-NCBD 复合物可以共翻译形成,但只有 ACTR 作为新生链,而 NCBD 在溶液中是游离的,反之则不然。我们表明,这种行为的惊人不对称是由明显的电荷相互作用引起的:带正电荷的 NCBD 新生链对带负电荷的核糖体表面的吸引力与复合物形成竞争,并阻止 ACTR 结合。相比之下,带负电荷的新生 ACTR 被核糖体表面排斥,因此仍然可以有效地与其伴侣结合。因此,静电相互作用可能比以前认为的对共翻译折叠和结合更为重要。

相似文献

1
Charge Interactions Can Dominate Coupled Folding and Binding on the Ribosome.
Biophys J. 2018 Sep 18;115(6):996-1006. doi: 10.1016/j.bpj.2018.07.037. Epub 2018 Aug 15.
2
Synergistic folding of two intrinsically disordered proteins: searching for conformational selection.
Mol Biosyst. 2012 Jan;8(1):198-209. doi: 10.1039/c1mb05156c. Epub 2011 Jul 18.
3
Residual Structure Accelerates Binding of Intrinsically Disordered ACTR by Promoting Efficient Folding upon Encounter.
J Mol Biol. 2019 Jan 18;431(2):422-432. doi: 10.1016/j.jmb.2018.12.001. Epub 2018 Dec 7.
4
A structurally heterogeneous transition state underlies coupled binding and folding of disordered proteins.
J Biol Chem. 2019 Jan 25;294(4):1230-1239. doi: 10.1074/jbc.RA118.005854. Epub 2018 Dec 4.
6
A folded excited state of ligand-free nuclear coactivator binding domain (NCBD) underlies plasticity in ligand recognition.
Biochemistry. 2013 Mar 12;52(10):1686-93. doi: 10.1021/bi4001062. Epub 2013 Mar 1.
7
Electrostatic effect of the ribosomal surface on nascent polypeptide dynamics.
ACS Chem Biol. 2013;8(6):1195-204. doi: 10.1021/cb400030n. Epub 2013 Apr 5.
8
Mapping the transition state for a binding reaction between ancient intrinsically disordered proteins.
J Biol Chem. 2020 Dec 18;295(51):17698-17712. doi: 10.1074/jbc.RA120.015645.
9
Helical propensity in an intrinsically disordered protein accelerates ligand binding.
Angew Chem Int Ed Engl. 2014 Feb 3;53(6):1548-51. doi: 10.1002/anie.201307712. Epub 2014 Jan 21.
10
Single-molecule studies of intrinsically disordered proteins using solid-state nanopores.
Anal Chem. 2013 Feb 19;85(4):2449-56. doi: 10.1021/ac3035025. Epub 2013 Feb 6.

引用本文的文献

1
Folding-upon-binding pathways of an intrinsically disordered protein from a deep Markov state model.
Proc Natl Acad Sci U S A. 2024 Feb 6;121(6):e2313360121. doi: 10.1073/pnas.2313360121. Epub 2024 Jan 31.
2
How the ribosome shapes cotranslational protein folding.
Curr Opin Struct Biol. 2024 Feb;84:102740. doi: 10.1016/j.sbi.2023.102740. Epub 2023 Dec 9.
3
Folding-upon-binding pathways of an intrinsically disordered protein from a deep Markov state model.
bioRxiv. 2023 Jul 25:2023.07.21.550103. doi: 10.1101/2023.07.21.550103.
4
Co-Translational Folding of Multi-Domain Proteins.
Front Mol Biosci. 2022 Apr 20;9:869027. doi: 10.3389/fmolb.2022.869027. eCollection 2022.
5
Cotranslational Mechanisms of Protein Biogenesis and Complex Assembly in Eukaryotes.
Annu Rev Biomed Data Sci. 2022 Aug 10;5:67-94. doi: 10.1146/annurev-biodatasci-121721-095858. Epub 2022 Apr 26.
6
Common sequence motifs of nascent chains engage the ribosome surface and trigger factor.
Proc Natl Acad Sci U S A. 2021 Dec 28;118(52). doi: 10.1073/pnas.2103015118.
7
Interactions between nascent proteins and the ribosome surface inhibit co-translational folding.
Nat Chem. 2021 Dec;13(12):1214-1220. doi: 10.1038/s41557-021-00796-x. Epub 2021 Oct 14.
8
Investigating the Conformational Ensembles of Intrinsically Disordered Proteins with a Simple Physics-Based Model.
J Phys Chem B. 2020 May 21;124(20):4097-4113. doi: 10.1021/acs.jpcb.0c01949. Epub 2020 May 13.
9
Cotranslational Folding of Proteins on the Ribosome.
Biomolecules. 2020 Jan 7;10(1):97. doi: 10.3390/biom10010097.
10
Proteins: Disorder, Folding, and Crowding.
Biophys J. 2019 Jul 9;117(1):3-4. doi: 10.1016/j.bpj.2019.06.014. Epub 2019 Jun 20.

本文引用的文献

1
Evidence of evolutionary selection for cotranslational folding.
Proc Natl Acad Sci U S A. 2017 Oct 24;114(43):11434-11439. doi: 10.1073/pnas.1705772114. Epub 2017 Oct 10.
2
Rapid Microfluidic Dilution for Single-Molecule Spectroscopy of Low-Affinity Biomolecular Complexes.
Angew Chem Int Ed Engl. 2017 Jun 12;56(25):7126-7129. doi: 10.1002/anie.201702439. Epub 2017 May 16.
3
Translation and folding of single proteins in real time.
Proc Natl Acad Sci U S A. 2017 May 30;114(22):E4399-E4407. doi: 10.1073/pnas.1617873114. Epub 2017 May 15.
4
Rapid Microfluidic Double-Jump Mixing Device for Single-Molecule Spectroscopy.
J Am Chem Soc. 2017 May 3;139(17):6062-6065. doi: 10.1021/jacs.7b02357. Epub 2017 Apr 19.
5
Cotranslational folding of spectrin domains via partially structured states.
Nat Struct Mol Biol. 2017 Mar;24(3):221-225. doi: 10.1038/nsmb.3355. Epub 2017 Jan 23.
6
Co-translational protein folding: progress and methods.
Curr Opin Struct Biol. 2017 Feb;42:83-89. doi: 10.1016/j.sbi.2016.11.020. Epub 2016 Dec 9.
7
Consistent View of Polypeptide Chain Expansion in Chemical Denaturants from Multiple Experimental Methods.
J Am Chem Soc. 2016 Sep 14;138(36):11714-26. doi: 10.1021/jacs.6b05917. Epub 2016 Sep 1.
8
Quality over quantity: optimizing co-translational protein folding with non-'optimal' synonymous codons.
Curr Opin Struct Biol. 2016 Jun;38:102-10. doi: 10.1016/j.sbi.2016.06.002. Epub 2016 Jun 16.
9
A structural ensemble of a ribosome-nascent chain complex during cotranslational protein folding.
Nat Struct Mol Biol. 2016 Apr;23(4):278-285. doi: 10.1038/nsmb.3182. Epub 2016 Feb 29.
10
Trigger Factor Reduces the Force Exerted on the Nascent Chain by a Cotranslationally Folding Protein.
J Mol Biol. 2016 Mar 27;428(6):1356-1364. doi: 10.1016/j.jmb.2016.02.014. Epub 2016 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验