Department of Biology, Stanford University, Stanford, California, USA; email:
Department of Genetics, Stanford University, Stanford, California, USA.
Annu Rev Biomed Data Sci. 2022 Aug 10;5:67-94. doi: 10.1146/annurev-biodatasci-121721-095858. Epub 2022 Apr 26.
The formation of protein complexes is crucial to most biological functions. The cellular mechanisms governing protein complex biogenesis are not yet well understood, but some principles of cotranslational and posttranslational assembly are beginning to emerge. In bacteria, this process is favored by operons encoding subunits of protein complexes. Eukaryotic cells do not have polycistronic mRNAs, raising the question of how they orchestrate the encounter of unassembled subunits. Here we review the constraints and mechanisms governing eukaryotic co- and posttranslational protein folding and assembly, including the influence of elongation rate on nascent chain targeting, folding, and chaperone interactions. Recent evidence shows that mRNAs encoding subunits of oligomeric assemblies can undergo localized translation and form cytoplasmic condensates that might facilitate the assembly of protein complexes. Understanding the interplay between localized mRNA translation and cotranslational proteostasis will be critical to defining protein complex assembly in vivo.
蛋白质复合物的形成对大多数生物功能至关重要。尽管细胞内调控蛋白质复合物生物发生的机制尚不清楚,但一些共翻译和翻译后组装的原则开始显现。在细菌中,这个过程受到编码蛋白质复合物亚基的操纵子的促进。真核细胞没有多顺反子 mRNA,这就提出了一个问题,即它们如何协调未组装亚基的相遇。在这里,我们综述了调控真核共翻译和翻译后蛋白质折叠和组装的限制和机制,包括延伸率对新生链靶向、折叠和伴侣蛋白相互作用的影响。最近的证据表明,寡聚组装亚基的 mRNA 可以进行局部翻译,并形成细胞质凝聚物,这可能有助于蛋白质复合物的组装。理解局部 mRNA 翻译和共翻译蛋白稳态之间的相互作用对于定义体内蛋白质复合物的组装至关重要。