Suppr超能文献

一种用于生物标志物检测的两阶段隐马尔可夫模型设计及其在微生物组研究中的应用。

A two-stage hidden Markov model design for biomarker detection, with application to microbiome research.

作者信息

Zhou Yi-Hui, Brooks Paul, Wang Xiaoshan

机构信息

Department of Biological Sciences, Bioinformatics Research Center, North Carolina State University, North Carolina, United States of America.

Department of Statistical Sciences and Operations Research and Department of Supply Chain Management and Analytics, Virginia Commonwealth University, Virginia, United States of America.

出版信息

Stat Biosci. 2018 Apr;10(1):41-58. doi: 10.1007/s12561-017-9187-y. Epub 2017 Feb 10.

Abstract

It has been recognized that for appropriately ordered data, hidden Markov models (HMM) with local false discovery rate (FDR) control can increase the power to detect significant associations. For many high-throughput technologies, the cost still limits their application. Two-stage designs are attractive, in which a set of interesting features or biomarkers is identified in a first stage, and then followed up in a second stage. However, to our knowledge no two-stage FDR control with HMMs has been developed. In this paper, we study an efficient HMM-FDR based two-stage design, using a simple integrated analysis procedure across the stages. Numeric studies show its excellent performance when compared to available methods. A power analysis method is also proposed. We use examples from microbiome data to illustrate the methods.

摘要

人们已经认识到,对于适当排序的数据,具有局部错误发现率(FDR)控制的隐马尔可夫模型(HMM)可以提高检测显著关联的能力。对于许多高通量技术而言,成本仍然限制了它们的应用。两阶段设计很有吸引力,即在第一阶段识别出一组有趣的特征或生物标志物,然后在第二阶段进行跟进。然而,据我们所知,尚未开发出基于HMM的两阶段FDR控制方法。在本文中,我们研究了一种基于HMM-FDR的高效两阶段设计,该设计在各个阶段使用简单的综合分析程序。数值研究表明,与现有方法相比,它具有出色的性能。我们还提出了一种功效分析方法。我们使用微生物组数据的例子来说明这些方法。

相似文献

6
False discovery rate control in two-stage designs.两阶段设计中的假发现率控制。
BMC Bioinformatics. 2012 May 6;13:81. doi: 10.1186/1471-2105-13-81.
9
Disease surveillance using a hidden Markov model.使用隐马尔可夫模型进行疾病监测。
BMC Med Inform Decis Mak. 2009 Aug 10;9:39. doi: 10.1186/1472-6947-9-39.

本文引用的文献

1
Two-stage microbial community experimental design.两阶段微生物群落实验设计。
ISME J. 2013 Dec;7(12):2330-9. doi: 10.1038/ismej.2013.139. Epub 2013 Aug 15.
9
A unified approach to false discovery rate estimation.一种统一的错误发现率估计方法。
BMC Bioinformatics. 2008 Jul 9;9:303. doi: 10.1186/1471-2105-9-303.
10
Study designs for genome-wide association studies.全基因组关联研究的研究设计。
Adv Genet. 2008;60:465-504. doi: 10.1016/S0065-2660(07)00417-8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验