Suppr超能文献

贝叶斯多层次模型在死亡分析报告系统中对缺失大麻数据的多重插补。

Multiple imputation of missing marijuana data in the Fatality Analysis Reporting System using a Bayesian multilevel model.

机构信息

Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY 10032, USA.

Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY 10032, USA.

出版信息

Accid Anal Prev. 2018 Nov;120:262-269. doi: 10.1016/j.aap.2018.08.021. Epub 2018 Aug 31.

Abstract

BACKGROUND

The Fatality Analysis Reporting System (FARS) provides important data for studying the role of marijuana in motor vehicle crashes. However, marijuana testing data are available for only 34% of drivers in the FARS, which represents a major barrier in the use of the data.

METHODS

We developed a multiple imputation (MI) procedure for estimating marijuana positivity among drivers with missing marijuana test results, using a Bayesian multilevel model that allows a nonlinear association with blood alcohol concentrations (BACs), accounts for correlations among drivers in the same states, and includes both individual-level and state-level covariates. We generated 10 imputations for the missing marijuana-testing data using Markov chain Monte Carlo simulations and estimated positivity rates of marijuana in the nation and each state.

RESULTS

Drivers who were at older age, female, using seatbelt at the time of crash, having valid license, or operating median/heavy trucks were less likely to test positive for marijuana. There was a reverse U-shaped association between BACs and positivity of marijuana, with lower positivity when BACs < 0.01 g/dL or ≥0.15 g/dL. The MI data estimated a lower positivity rate of marijuana in the nation and each of the state than the observed data, with a national positivity rate of 11.7% (95% CI: 11.1, 12.4) versus 14.8% using the observed data in 2013.

CONCLUSIONS

Our MI procedure appears to be a valid approach to addressing missing marijuana data in the FARS and may help strengthen the capacity of the FARS for monitoring the epidemic of drugged driving and understanding the role of marijuana in fatal motor vehicle crashes in the United States.

摘要

背景

Fatality Analysis Reporting System(FARS)为研究大麻在机动车事故中的作用提供了重要数据。然而,FARS 中只有 34%的驾驶员的大麻检测数据可用,这是数据使用的主要障碍。

方法

我们使用贝叶斯多层次模型开发了一种多重插补(MI)程序,用于估算缺失大麻检测结果的驾驶员中大麻阳性率,该模型允许与血液酒精浓度(BAC)呈非线性关联,考虑到同一州的驾驶员之间的相关性,并包含个体水平和州水平的协变量。我们使用马尔可夫链蒙特卡罗模拟对缺失的大麻检测数据进行了 10 次插补,并估计了全国和每个州的大麻阳性率。

结果

在碰撞时年龄较大、女性、系安全带、持有有效驾照或操作中型/重型卡车的驾驶员检测出大麻阳性的可能性较低。BAC 与大麻阳性之间呈反向 U 形关联,当 BAC<0.01 g/dL 或≥0.15 g/dL 时,大麻阳性率较低。MI 数据估计的全国和每个州的大麻阳性率均低于观察数据,2013 年全国大麻阳性率为 11.7%(95%CI:11.1,12.4),而观察数据为 14.8%。

结论

我们的 MI 程序似乎是解决 FARS 中缺失大麻数据的有效方法,可能有助于加强 FARS 监测药物驾驶流行和了解大麻在美国致命机动车事故中的作用的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验