IEEE Trans Med Imaging. 2019 Feb;38(2):596-607. doi: 10.1109/TMI.2018.2868045. Epub 2018 Aug 30.
The accurate segmentation of the brain surface in post-surgical computed tomography (CT) images is critical for image-guided neurosurgical procedures in epilepsy patients. Following surgical implantation of intracranial electrodes, surgeons require accurate registration of the post-implantation CT images to the pre-implantation functional and structural magnetic resonance imaging to guide surgical resection of epileptic tissue. One way to perform the registration is via surface matching. The key challenge in this setup is the CT segmentation, where the extraction of the cortical surface is difficult due to the missing parts of the skull and artifacts introduced from the electrodes. In this paper, we present a dictionary learning-based method to segment the brain surface in post-surgical CT images of epilepsy patients following surgical implantation of electrodes. We propose learning a model of locally oriented appearance that captures both the normal tissue and the artifacts found along this brain surface boundary. Utilizing a database of clinical epilepsy imaging data to train and test our approach, we demonstrate that our method using locally oriented image appearance both more accurately extracts the brain surface and better localizes electrodes on the post-operative brain surface compared to standard, non-oriented appearance modeling. In addition, we compare our method to a standard atlas-based segmentation approach and to a U-Net-based deep convolutional neural network segmentation method.
在癫痫患者的图像引导神经外科手术中,准确分割术后计算机断层扫描(CT)图像中的脑表面至关重要。在颅内电极植入手术后,外科医生需要将术后 CT 图像与术前功能和结构磁共振成像进行准确配准,以指导癫痫组织的手术切除。一种执行配准的方法是通过表面匹配。在这种设置中,关键的挑战是 CT 分割,由于颅骨缺失和电极引入的伪影,皮质表面的提取很困难。在本文中,我们提出了一种基于字典学习的方法,用于对癫痫患者术后 CT 图像中的脑表面进行分割,这些患者在手术后植入了电极。我们提出学习一种局部定向外观的模型,该模型可以同时捕获正常组织和沿该脑表面边界发现的伪影。利用临床癫痫成像数据的数据库来训练和测试我们的方法,我们证明了与标准的非定向外观建模相比,我们的方法利用局部定向图像外观可以更准确地提取脑表面,并更好地定位术后脑表面上的电极。此外,我们将我们的方法与标准的基于图谱的分割方法和基于 U-Net 的深度卷积神经网络分割方法进行了比较。