Suppr超能文献

基于稀疏数据的有效且高效的生物医学图像分割学习方法。

Sparse Data-Driven Learning for Effective and Efficient Biomedical Image Segmentation.

机构信息

Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut 06520, USA; email:

Department of Urology, Yale School of Medicine, New Haven, Connecticut 06520, USA.

出版信息

Annu Rev Biomed Eng. 2020 Jun 4;22:127-153. doi: 10.1146/annurev-bioeng-060418-052147. Epub 2020 Mar 13.

Abstract

Sparsity is a powerful concept to exploit for high-dimensional machine learning and associated representational and computational efficiency. Sparsity is well suited for medical image segmentation. We present a selection of techniques that incorporate sparsity, including strategies based on dictionary learning and deep learning, that are aimed at medical image segmentation and related quantification.

摘要

稀疏性是用于高维机器学习以及相关表示和计算效率的强大概念。稀疏性非常适合医学图像分割。我们介绍了一些利用稀疏性的技术,包括基于字典学习和深度学习的策略,这些技术旨在用于医学图像分割和相关的量化。

相似文献

8
Machine learning and deep learning for brain tumor MRI image segmentation.机器学习和深度学习在脑肿瘤 MRI 图像分割中的应用。
Exp Biol Med (Maywood). 2023 Nov;248(21):1974-1992. doi: 10.1177/15353702231214259. Epub 2023 Dec 16.
9
NiftyNet: a deep-learning platform for medical imaging.NiftyNet:一个用于医学成像的深度学习平台。
Comput Methods Programs Biomed. 2018 May;158:113-122. doi: 10.1016/j.cmpb.2018.01.025. Epub 2018 Jan 31.

本文引用的文献

4
Deep Learning in Medical Image Analysis.医学图像分析中的深度学习
Annu Rev Biomed Eng. 2017 Jun 21;19:221-248. doi: 10.1146/annurev-bioeng-071516-044442. Epub 2017 Mar 9.
6
Sparsity techniques in medical imaging.医学成像中的稀疏技术。
Comput Med Imaging Graph. 2015 Dec;46 Pt 1(Pt 1):1. doi: 10.1016/j.compmedimag.2015.07.002. Epub 2015 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验