Suppr超能文献

基于可穿戴设备心率样本计算心率变异性的方法学考虑。

Methodological considerations in calculating heart rate variability based on wearable device heart rate samples.

机构信息

Institute of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan.

Division of Cardiology, Department of Medicine, Taipei Veteran General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.

出版信息

Comput Biol Med. 2018 Nov 1;102:396-401. doi: 10.1016/j.compbiomed.2018.08.023. Epub 2018 Aug 22.

Abstract

Heart rate variability (HRV) analysis has recently been incorporated into wearable device application. The data source of HRV is the time series of heart beat intervals extracted from electrocardiogram or photoplethysmogram. These intervals are non-uniformly sampled signals and not suitable for spectral HRV analysis, which usually uses uniformly resampled heart beat intervals before calculating the spectral domain parameters. Such a practice is not applicable to heart rate data obtained from wearable devices that usually display and export the beat per minute (BPM) time series data at 1 Hz. The preferred resampling rate to calculate spectral domain parameters is 4 Hz. We compare the spectral HRV results with the 1 Hz and 4 Hz resampling rates in order to validate the use of 1 Hz resampled-RRI data to represent wearable devices BPM time series data for HRV analysis. Our results show that, using a specific combination of signal processing techniques, the lowest mean relative error in spectral domain parameters of normalized low-frequency power (LFnu), normalized high-frequency power (HFnu) and the ratio of normalized low-frequency power to normalized high-frequency power (LFnu/HFnu) between 1 Hz and 4 Hz are 3.7%, 15.3% and 16.4%, respectively. We conclude that using the heart rate data sampled at 1 Hz produces a reasonable estimation of sympathetic activity but a poor estimation of parasympathetic activity.

摘要

心率变异性(HRV)分析最近已被纳入可穿戴设备应用中。HRV 的数据源是从心电图或光体积描记图中提取的心跳间隔时间序列。这些间隔是非均匀采样的信号,不适合进行频谱 HRV 分析,后者通常在计算频域参数之前使用均匀重采样的心跳间隔。这种做法不适用于从可穿戴设备获得的心率数据,这些设备通常以 1 Hz 的频率显示和输出每分钟心跳(BPM)时间序列数据。计算频域参数的首选重采样率为 4 Hz。我们比较了频谱 HRV 结果与 1 Hz 和 4 Hz 重采样率,以验证使用 1 Hz 重采样的 RRI 数据来表示可穿戴设备 BPM 时间序列数据进行 HRV 分析的合理性。我们的结果表明,使用特定的信号处理技术组合,归一化低频功率(LFnu)、归一化高频功率(HFnu)和归一化低频功率与高频功率之比(LFnu/HFnu)的谱域参数的最低平均相对误差分别为 3.7%、15.3%和 16.4%。我们得出结论,使用 1 Hz 采样的心率数据可以合理估计交感神经活动,但对副交感神经活动的估计较差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验