Suppr超能文献

葡萄园中的快速表型分析:GRover(葡萄藤漫游者)和 LiDAR 的开发,用于在田间评估葡萄藤特性。

Fast Phenomics in Vineyards: Development of GRover, the Grapevine Rover, and LiDAR for Assessing Grapevine Traits in the Field.

机构信息

CSIRO Agriculture and Food, Waite Campus, Urrbrae 5064, Adelaide, Australia.

High Resolution Plant Phenomics Centre (HRPPC), Australian Plant Phenomics Facility (APPF), Cnr Clunies Ross St and Barry Dr, Acton 2601, Canberra, Australia.

出版信息

Sensors (Basel). 2018 Sep 3;18(9):2924. doi: 10.3390/s18092924.

Abstract

This paper introduces GRover (the grapevine rover), an adaptable mobile platform for the deployment and testing of proximal imaging sensors in vineyards for the non-destructive assessment of trunk and cordon volume and pruning weight. A SICK LMS-400 light detection and ranging (LiDAR) radar mounted on GRover was capable of producing precise (±3 mm) 3D point clouds of vine rows. Vineyard scans of the grapevine variety Shiraz grown under different management systems at two separate locations have demonstrated that GRover is able to successfully reproduce a variety of vine structures. Correlations of pruning weight and vine wood (trunk and cordon) volume with LiDAR scans have resulted in high coefficients of determination (R² = 0.91 for pruning weight; 0.76 for wood volume). This is the first time that a LiDAR of this type has been extensively tested in vineyards. Its high scanning rate, eye safe laser and ability to distinguish tissue types make it an appealing option for further development to offer breeders, and potentially growers, quantified measurements of traits that otherwise would be difficult to determine.

摘要

本文介绍了 GRover(葡萄藤漫游者),这是一种适应性强的移动平台,可用于在葡萄园部署和测试近程成像传感器,以实现对树干和蔓藤体积和修剪重量的无损评估。安装在 GRover 上的 SICK LMS-400 激光检测和测距 (LiDAR) 雷达能够生成精确的(±3 毫米)3D 点云,这些点云反映了葡萄藤的行列。在两个不同地点,对不同管理系统下种植的 Shiraz 葡萄品种进行的葡萄园扫描表明,GRover 能够成功复制各种葡萄藤结构。修剪重量和葡萄木(树干和蔓藤)体积与 LiDAR 扫描的相关性导致了高决定系数(修剪重量为 0.91;木材体积为 0.76)。这是此类 LiDAR 首次在葡萄园进行广泛测试。其高扫描率、人眼安全激光和区分组织类型的能力使其成为进一步开发的有吸引力的选择,可为育种者,以及潜在的种植者,提供难以直接确定的特征的定量测量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bed0/6163379/1fcdaea8341c/sensors-18-02924-g001.jpg

相似文献

2
On-Ground Vineyard Reconstruction Using a LiDAR-Based Automated System.
Sensors (Basel). 2020 Feb 18;20(4):1102. doi: 10.3390/s20041102.
3
Evaluation of Vineyard Cropping Systems Using On-Board RGB-Depth Perception.
Sensors (Basel). 2020 Dec 3;20(23):6912. doi: 10.3390/s20236912.
4
LiDAR Is Effective in Characterizing Vine Growth and Detecting Associated Genetic Loci.
Plant Phenomics. 2023 Nov 17;5:0116. doi: 10.34133/plantphenomics.0116. eCollection 2023.
5
Detection of Grapevine Fungal Trunk Pathogens on Pruning Shears and Evaluation of Their Potential for Spread of Infection.
Plant Dis. 2015 Jul;99(7):976-981. doi: 10.1094/PDIS-12-14-1283-RE. Epub 2015 May 15.
8
Estimating Biomass and Canopy Height With LiDAR for Field Crop Breeding.
Front Plant Sci. 2019 Sep 26;10:1145. doi: 10.3389/fpls.2019.01145. eCollection 2019.
9
From berries to blocks: carbon stock quantification of a California vineyard.
Carbon Balance Manag. 2017 Dec;12(1):5. doi: 10.1186/s13021-017-0071-3. Epub 2017 Feb 16.
10
VineLiDAR: High-resolution UAV-LiDAR vineyard dataset acquired over two years in northern Spain.
Data Brief. 2023 Oct 14;51:109686. doi: 10.1016/j.dib.2023.109686. eCollection 2023 Dec.

引用本文的文献

1
To have value, comparisons of high-throughput phenotyping methods need statistical tests of bias and variance.
Front Plant Sci. 2024 Jan 19;14:1325221. doi: 10.3389/fpls.2023.1325221. eCollection 2023.
2
LiDAR Is Effective in Characterizing Vine Growth and Detecting Associated Genetic Loci.
Plant Phenomics. 2023 Nov 17;5:0116. doi: 10.34133/plantphenomics.0116. eCollection 2023.
4
Development of a Low-Cost System for 3D Orchard Mapping Integrating UGV and LiDAR.
Plants (Basel). 2021 Dec 17;10(12):2804. doi: 10.3390/plants10122804.
6
Review: New sensors and data-driven approaches-A path to next generation phenomics.
Plant Sci. 2019 May;282:2-10. doi: 10.1016/j.plantsci.2019.01.011. Epub 2019 Jan 12.

本文引用的文献

1
High Throughput Determination of Plant Height, Ground Cover, and Above-Ground Biomass in Wheat with LiDAR.
Front Plant Sci. 2018 Feb 27;9:237. doi: 10.3389/fpls.2018.00237. eCollection 2018.
2
Plant phenomics: an overview of image acquisition technologies and image data analysis algorithms.
Gigascience. 2017 Nov 1;6(11):1-18. doi: 10.1093/gigascience/gix092.
3
High-Throughput Phenotyping of Maize Leaf Physiological and Biochemical Traits Using Hyperspectral Reflectance.
Plant Physiol. 2017 Jan;173(1):614-626. doi: 10.1104/pp.16.01447. Epub 2016 Nov 15.
4
Diurnal Solar Energy Conversion and Photoprotection in Rice Canopies.
Plant Physiol. 2017 Jan;173(1):495-508. doi: 10.1104/pp.16.01585. Epub 2016 Nov 28.
5
High-throughput phenotyping technologies allow accurate selection of stay-green.
J Exp Bot. 2016 Sep;67(17):4919-24. doi: 10.1093/jxb/erw301.
6
Lights, camera, action: high-throughput plant phenotyping is ready for a close-up.
Curr Opin Plant Biol. 2015 Apr;24:93-9. doi: 10.1016/j.pbi.2015.02.006. Epub 2015 Feb 27.
7
Integration of phenotyping and genetic platforms for a better understanding of wheat performance under drought.
J Exp Bot. 2014 Nov;65(21):6167-77. doi: 10.1093/jxb/eru384. Epub 2014 Sep 22.
8
Indoor versus outdoor time in preschoolers at child care.
Am J Prev Med. 2013 Jan;44(1):85-8. doi: 10.1016/j.amepre.2012.09.052.
9
Innovative LIDAR 3D Dynamic Measurement System to estimate fruit-tree leaf area.
Sensors (Basel). 2011;11(6):5769-91. doi: 10.3390/s110605769. Epub 2011 May 27.
10
Phenomics--technologies to relieve the phenotyping bottleneck.
Trends Plant Sci. 2011 Dec;16(12):635-44. doi: 10.1016/j.tplants.2011.09.005. Epub 2011 Nov 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验